Antpedia LOGO WIKI资讯

《自然》:量子信号放大器抗噪性能接近极致

据美国物理学家组织网5月6日(北京时间)报道,来自美国的研究团队研制出一种量子计算机信号放大器,能够传输小到一个光量子所包含的微弱信号,而且产生的“噪声”非常少,几乎达到了量子计算机的理想要求。相关研究发表在5月6日出版的《自然》杂志上。 量子计算机和手机一样,依靠复杂的微波放大器来确保信息能够被精确地接收和还原。然而,所有的放大器都有天生的缺陷,其中最大的缺陷在于它们会随机产生噪声,这些噪声会让信号变得模糊。在量子物理学层面,海森堡不确定性原理表明,不管放大器做得多么好,少量的“噪声”都是不可避免的。 该研究团队的领导者之一、耶鲁大学应用物理学教授米歇尔·德沃雷表示,量子计算机如果要想获得其理论上具备的巨大潜力,需要新的放大器,其应能传输小到一个光量子(也称光子,是光线中携带能量的粒子)所包含的微弱信号。 德沃雷和耶鲁大学物理学和应用物理学教授、科学和技术学院代理院长史蒂文·格文领导的研究团队现已研制出了这......阅读全文

《自然》文章:数据隐形传输,量子太空竞赛

  三年前,潘建伟将星际旅行带到了中国长城。从位于北京北部丘陵的长城附近实验点,他和他的团队——来自合肥的中国科学技术大学的物理学家们,将激光瞄准16公里之外的屋顶上的探测器,然后利用激光光子的量子特性将信息“瞬移”过去。这刷新了当时量子隐形传态的世界纪录,这是朝着实现团队的终极目标——将

《环球科学》2011年十大科学新闻评选

  “十大科学新闻”评选是《环球科学》(《科学美国人》杂志中文版)每年一度的重头戏,也是本年度全球各大科学领域的重大事件进行的一次全面盘点。经过专业编辑和专家团队的商讨,《环球科学》初步挑选出了30条候选新闻,接受网友的点评和投票。  1、超光速粒子挑战爱因斯坦相对论  9月23日,欧洲核子研究中心

微波量子库将机械振荡器引入量子技术

  在瑞士洛桑联邦理工学院近期的一项实验中,一种微波谐振器与金属微鼓振动发生了耦合作用,通过主动冷却近乎量子力学所允许的最低能量的机械运动,微鼓可以变成一个能够塑造微波状态的量子库。该发现发表在《自然—物理学》杂志上。微鼓的电子显微镜照片扫描 图片来源:美国《科学日报》  纳斯博特·伯尼尔博士和阿列

紫外可见分光光度计光学发展史

紫外可见分光光度计光学发展史 A、公元前390年前我国春秋战国之际,墨翟和他的弟子们记载了关于光的直线传播和光在镜面(凹面和凸面)上的反射等现象,并提出了一系列经验规律,把物和象的位置与大小与所用镜面的曲率了起来。B、公元50-168年间克莱门德和托勒密研究了光的折射现象,zui先测定了光

紫外可见分光光度计光学发展史

紫外可见分光光度计光学发展史    A、公元前390年前    我国春秋战国之际,墨翟和他的弟子们记载了关于光的直线传播和光在镜面(凹面和凸面)上的反射等现象,并提出了一系列经验规律,把物和象的位置与大小与所用镜面的曲率了起来。    B、公元50-168年间    克莱门德和托勒密研究了光的折射现

利用新型存储器阵列一步解线性方程组和特征向量

  在大数据时代,人们要处理的数据呈爆发式增长,而很多数据处理本质是一个矩阵方程问题,如谷歌的网页排序(PageRank算法)、利用超级计算机模拟量子效应(解薛定谔方程)。随着摩尔定律的失效,以及由于冯诺依曼架构存储、计算分离的固有限制,想更快、更省地完成数据处理变得越来越难,而计算的时间和能耗效率

原子吸收光谱和ICP光谱比较

  浅谈原子吸收光谱和ICP光谱  原子吸收光谱法和原子发射光谱法都属于原子光谱分析技术。不同之处在于原子发射光谱分析技术是通过测量被测元素的发射谱线的波长与强度进行定性与定量分析的一种原子光谱技术;而原子吸收光谱则是依据被测元素对锐线光源的吸收程度进行定量分析的一种原子光谱技术。下面对两种技术简单

物理学家里曼·戴森去世 曾称“生物学是21世纪的科学”

  「2020年2月28日,英国旅美物理学家、普林斯顿高等研究院教授弗里曼·戴森不幸去世,享年96岁。戴森在物理学造诣深厚,是我国物理学家杨振宁先生的同事和朋友,曾称杨先生为“保守的革命家”。他知识丰富,思考深邃,对物理学之外也多有评论,例如他曾经称“生物学是21世纪的科学”。  《鸟和青蛙》(Bi

传感器和检测仪表的现状与发展趋势

我国传感器产业要适应技术潮流,根据市场需求,做到“新苗交替、远近结合、品种齐全、满足需求”,做到“大、中、小并举”,“集团化和专业化生产并存”,向国内外两个市场相结合的国际化方向发展,让传感器和检测仪表抓住信息化的发展机遇。传感器和检测仪表的现状,并预测了今后的发展趋势 工业设备在制造过程及整机性能

2011中俄NSFC-FRBR合作项目初审结果公布

2011年度国家自然科学基金委员会与俄罗斯基础研究基金会(RFBR)合作项目集中征集期间,共接收项目申请145项。根据相关规定,予以受理以下140项申请:序号科学部受理号申请人申请人单位项目名称合作者合作者单位111110099张焕乔中国原子能科学研究院30Si+208Pb极深垒下熔合反应研究Ale

2017太赫兹科技发展回顾与展望

随着2018年的即将到来,2017已离我们越来越远。回顾发展历程,总结经验启示,瞻望美好未来,谋划创新思路,是对来年的提前布局、未雨绸缪,也是对来年太赫兹科技带给我们更多惊喜和突破、迎来更为广阔发展前景的期待。回首2017,太赫兹科学研究取得了哪些重要进展?太赫兹产业应用取得了哪些重要突破?展望20

傅里叶变换红外光谱仪原理

一、产生红外吸收的条件根据量子力学,分子内部原子间的相对振动和分子本身转动所需的能量是量子化的,也就是说,从一个能态跃迁到另一个能态不是连续的,当照射于分子的光能 (E,E=hυ,h为普朗克常数,υ为光的频率) 刚好等于基态第一振动或转动能量的差值 (△E=E1- E0) 时,则分子便可吸收光能量,

组织的光学特性及其成像基础(二)

8.组织的吸收特性 组织的吸收是各个分子成分共同作用的结果。当光子的能量与分子的能级间隔匹配时,分子吸收光子。在短波长区(光子能量大),这些跃迁是电子跃迁。紫外区的重要吸收体包括DNA,芳香族氨基酸(色氨酸、酪氨酸),蛋白质,黑色素和卟啉(包括血红蛋白、肌红蛋白维生素B12以及细胞色素c)。 光穿透