Antpedia LOGO WIKI资讯

《神经元》:首次证实大脑疼痛受体与记忆相关

打孩子时,家长常常会说,“下次记住疼!”这或许有点道理。美国科学家的一项最新研究首次表明,能够影响机体痛觉的神经受体TRPV1在大脑的学习和记忆中也起到特定作用。这一研究成果有望为治疗记忆损失和癫痫症提供新的药物标靶。相关论文发表在3月13日的《神经元》(Neuron)杂志上。 TRPV1全称为瞬时受体电位香草酸亚型(transient receptor potential vanilloid subtype),它们普遍分布于包括皮肤、脊髓和大脑在内的神经系统中。该类受体能够感知热量、引发炎症并传导疼痛。此外,它们还能够对辣椒素做出响应。 在最新的研究中,美国布朗大学医学教授Julie Kauer和她的小组发现,TRPV1受体的活化能够引起长时程抑制(long-term depression,简称LTD),从而导致神经元突触联接的永久改变。而这些大脑改变,以及相应的神经重组和长期增益(long-term po......阅读全文

神经元芯片(Neuron Chip)

为了经济地、标准化地实现LonWorks技术的应用,Echelon公司设计了神经元芯片。神经元这一名称是为了表明正确的网络控制机制和人脑是极为相似的。人脑中是没有控制中心的。几百万个神经元连接在一起,每个神经元都能通过位数众多的路径向其他的神经元发送信息。每个神经元通常专注于某一种特殊功能,但是任何

Neuron:30个神经元联手抵抗疼痛

  催产素(oxytocin)在调节疼痛反应中发挥着关键性作用,但是迄今为止,导致催产素释放的过程仍然是未知的。在一项新的研究中,来自法国斯特拉斯堡市国家科学研究中心(CNRS)的Alexandre Charlet和来自德国癌症研究中心(DKFZ)的Valery Grinevich及其同事们鉴定出一

Neuron发现脑内痒觉调控神经元

  痒觉是一种可以引起抓挠的不愉快的感觉。痒觉与视觉、听觉等感知觉一样,也是大脑加工处理的产物。痒觉对于动物来说是一种重要的保护机制。痒觉通过诱导抓挠动作去除皮肤上具有潜在危害的异物。因此,痒觉对于动物的生存具有重要意义。  痒觉是一种可以引起抓挠的不愉快的感觉。痒觉与视觉、听觉等感知觉一样,也是大

Neuron:社交压力下神经元应对策略

  为了应对压力,个体表现出不同的应对方式,每种应对方式都伴随着一系列的行为、生理和心理反应。积极的行为风格是指努力抑制来自压力源的影响,并与抵御压力有关;消极的行为风格是指避免面对压力源的努力,并与心理病理学上的“易感性”有关。这一问题又被称为“战斗还是逃跑”。但是,该行为选择背后的生物学基础并没

Neuron:哪个神经元控制生物钟节律?

  最近,美国德克萨斯大学(UT)西南医学中心的神经科学家,确定了对决定昼夜节律至关重要的神经元。生物钟昼夜节律是一个24小时过程,控制着睡眠和清醒周期,以及其他重要的身体功能,如激素的分泌、代谢和血压。延伸阅读:美国院士Science:生物钟周期的关键因素。  昼夜节律是由位于大脑下丘脑的视交叉上

Cell:神经元识别标签或帮助阐明机体大脑的神经回路

  人类的大脑是由神经元的复杂回路组成的,而神经元是一类可以通过电化学信号来传递信息的细胞,类似于电脑的网络一样,神经元回路必须以特殊的方式互相连接才能够正常发挥作用,但在人类大脑中数以亿万计的神经元如何进行连接呢?而且神经元如何同正确的细胞进行连接?长期以来科学家们不断搜寻可以标记细胞形成连接的标

Neuron:ALS中大脑运动神经元在是如何死亡的

  最近神经科学研究人员在了解肌萎缩侧索硬化症(ALS)的原因上更近了一步,带来了治疗本病新方法的新希望。相关研究已经刊登于Neuron杂志上,这项新研究表明,ALS一个共同的基因突变会产生致命的蛋白质,可能引起大脑损害,导致ALS。  约5%的ALS患者携带C9orf72基因变异,其在ALS患者中

Neuron:与自闭症患者面部识别有关的单神经元

  加州理工学院的科学家们首次记录了自闭症患者脑部的单个神经元放电,发现在一个称为杏仁核的区域中的特殊神经元,表现出对面部眼睛部位信息的处理减弱。而且,这项研究发现,与对照组中观察到的情况相比,这些相同的神经元更容易对嘴部的信息发生响应。该项研究发表在11月20日的Neuron杂志上。   很难进

《神经元》:首次证实大脑疼痛受体与记忆相关

打孩子时,家长常常会说,“下次记住疼!”这或许有点道理。美国科学家的一项最新研究首次表明,能够影响机体痛觉的神经受体TRPV1在大脑的学习和记忆中也起到特定作用。这一研究成果有望为治疗记忆损失和癫痫症提供新的药物标靶。相关论文发表在3月13日的《神经元》(Neuron)杂志上。 TRPV1全称为瞬时

Neuron:发现产生老年痴呆症的神经元信号丢失途径

  梅奥诊所研究人员发现一个关键的细胞信号转导通路,其会促进阿尔茨海默氏症患者大脑中有毒蛋白生产过剩,以及神经元之间“通讯”的丢失,而毒蛋白和通讯丢失是阿尔茨海默氏症患者的两大致病因素。  他们的研究发表在Neuron杂志上,提示了用药物针对这个特定的缺陷,可能有助防止阿尔茨海默氏症。  研究员Gu