发布时间:2018-02-08 16:29 原文链接: Nature:揭示人体最为常见的DNA突变如何发生

  变形器(shape-shifter)并不仅是科幻的东西,它们是真实的,而且它们存在于我们的DNA中。

  在一项新的研究中,研究人员描述了人类DNA中的两个通常不匹配的碱基---鸟嘌呤(G)和胸腺嘧啶(T)---如何能够改变形状,从而在DNA螺旋“梯子”上形成一个不显眼的横档。这允许它们通过躲避身体对基因突变的天然防御而存活下来。相关研究结果于2018年1月31日在线发表在Nature期刊上,论文标题为“Dynamic basis for dG•dT misincorporation via tautomerization and ionization”。

图片来自CC0 Public Domain

  论文共同通信作者、俄亥俄州立大学化学与生物化学教授ZucaiSuo解释道,“当这两个碱基偶然形成氢键时,它们起初匹配得并不很好。它们从DNA螺旋上突出来,因此在正常情形下,用于复制DNA的酶很容易检测到它们并进行修复。但是有时,在被检测出来之前,它们就改变形状,就好像是这两个碱基彼此间进行“修复”一样,因此它们能够像正常的碱基对那样配对并逃避DNA修复机制。

  Suo说,“它们是坏人,但是它们假装自己是个好人,从而存活下来。”

  这一发现为其他类型的DNA突变研究提供了基础,其中这些类型的突变导致疾病以及正常的老化,甚至进化。

  组成DNA的四个碱基有它们各自的大小和形状,应当以正确的方式配对在一起。腺嘌呤(A)总是与胸腺嘧啶(T)配对,胞嘧啶(C)总是与鸟嘌呤(G)配对。这两种“沃森-克里克”碱基配对---A-T和C-G---组成我们所知道的所有生命的DNA序列。但是,如果G以某种方式与T错配,那么这将是一个突变。

  事实上,G-T突变是人类DNA中唯一最为常见的突变。在每10000~100000个碱基对中,这种突变就出现一次。这听起来不是很多,但是你要考虑到人类基因组含有30亿个碱基对。

  科学家们想要理解突变是如何发生的,以便更好地理解由它们引起的很多疾病,如癌症。这项新的研究提供了重要的信息,以便人们能够在这个领域继续向前取得新的进展。

  尽管科学家们长期以来一直在猜测为了类似于正常的G-C或A-T ,G-T错配会改变形状,这种现象之前从未被直接观察到。直到在Hashim M. Al-Hashimi领导下,杜克大学生物化学家利用一种核磁共振成像揭示出这些沃森-克里克类似的G-T错配在所谓的“裸露的”DNA中形成。

  不过,存在的一个问题是G-T错配如何存在。这就是为何Al-Hashimi与Suo联系,并请求他协助确定背后的生化机制。

  Al-Hashimi说,“一个有趣的问题是:是什么决定了活的有机体中的突变率。从那里,我们能够开始理解提高错配的特定条件或环境应激因素。”

  Suo和博士生Walter Zahurancik利用DNA聚合酶(一种复制DNA的酶)将G-T错配插入到DNA链中。通过在不同的时间里中止这种酶促化学反应并分析形成的DNA分子,他们能够测量这种聚合酶如何高效地形成G-T错配。

  Al-Hashimi和Suo一起确定G和T碱基会配对,但是以一种从DNA螺旋中突出来的异常方式进行配对。然后,在不到一秒的时间里,这两个碱基会重排它们的化学键,这样它们就能够快速地产生一个正常的碱基对的形状,并诱骗这种聚合酶完成这种化学反应。

  总之,它们进行伪装,从而使得酶在DNA复制和修复期间不太可能将它们检测出来。

  这种突变能够存活下来是一个真正的壮举,这是因为它必须克服一些基本的物理学限制。碱基以某种方式配对源自于它们的原子中的质子和电子的排列方式。碱基配对需要一定的能量,最简单、最节能的配对是“正确的”碱基配对,即A-T和C-G。

  实际上,G-T配对必须克服能量障碍才能形成和自我维持。事实证明当G和T碱基改变形状时,它们让它们自己更加节能---尽管效率仍然比正常的碱基配对要低,但也足够高效。

  接下来,这些研究人员将试图利用另一种不太常见的突变(A-C错配)开展类似的实验。

相关文章

七院院士,最新Nature:高性能柔性纤维问世,可穿戴电子新突破!

新加坡南洋理工大学的魏磊教授、七院院士高华建教授,以及中科院苏州纳米所的张其冲和中科院深圳先进技术研究院的陈明,共同发表了一篇关于高性能半导体纤维的最新研究成果。这篇题为“High-qualityse......

Nature发布2024年值得关注的七大技术,首位中国科学家成果入选

2024年1月22日,《自然》发布了2024年值得关注的七大技术——大片段DNA插入、人工智能设计蛋白质、脑机接口、细胞图谱、超高分辨率显微成像、3D打印纳米材料和DeepFake检测。七大技术中,生......

Nature发布2024年值得关注的七大技术,首位中国科学家成果入选

2024年1月22日,《自然》发布了2024年值得关注的七大技术——大片段DNA插入、人工智能设计蛋白质、脑机接口、细胞图谱、超高分辨率显微成像、3D打印纳米材料和DeepFake检测。七大技术中,生......

古DNA研究对东亚豹母系遗传历史提出新见解

1月15日,中国科学院古脊椎动物与古人类研究所、西北大学和湖南省文物考古研究院共同主导完成的题为《古DNA准确鉴定湖南老司城遗址残缺头骨以及东亚豹母系遗传历史新见解》(AncientDNAunrave......

北京大学合作最新Nature

钙钛矿太阳能电池(PSCs)由一个固体钙钛矿吸收体夹在几层不同的电荷选择材料之间,确保设备的单向电流流动和高压输出在p型/intrinsic/n型(p-i-n)PSCs(也称为倒置PSCs)中,电子选......

零下273.056摄氏度我国科学家Nature发文实现无液氦极低温制冷

大约一个世纪前,人类首次将氦气液化,开启了利用液氦进行极低温制冷的新纪元。随后,极低温制冷技术被广泛应用于大科学装置、深空探测、材料科学、量子计算等国家安全和战略高技术领域。然而,用于极低温制冷的氦元......

癌症“照妖镜”——游离DNA助力肿瘤早期探查

“人体细胞也有生命周期。细胞衰老凋亡后,细胞内的物质会渗透出来。其中,DNA会随之‘崩裂降解’,进入血液,成为游离DNA。”中国医学科学院肿瘤医院防癌科副主任张凯教授告诉科技日报记者,“肿瘤细胞的游离......

研究揭示双加氧酶的低复杂度结构域调控DNA氧化去甲基化

《自然-结构与分子生物学》(NatureStructural&MolecularBiology)在线发表了中国科学院分子细胞科学卓越创新中心杜雅蕊/徐国良团队完成的题为Auto-suppres......

回顾:2023年Nature\Science上的锂电池成果

2023年Nature上的电池文章汇总1.固态电解质最新成果登上Science日本东京工业大学创新研究所全固态电池研究中心RyojiKanno教授团队利用高熵材料的特性,通过增加已知锂超离子导体的组成......

章鱼DNA揭示南极冰盖或将崩溃

科学家一直想知道,西南极冰盖是否是一颗导致海平面上升的“定时炸弹”。根据发表在最新一期《科学》杂志上的研究,来自一只生活在南大洋的小型章鱼的DNA新证据表明,西南极冰盖比之前认为的更接近崩溃。如果人类......