发布时间:2019-06-27 14:14 原文链接: Nature:糖醛酸代谢过程尿苷二磷酸葡萄糖抑制肺癌转移

  6月27日,国际学术期刊《自然》(Nature)在线发表了中国科学院分子细胞科学卓越创新中心/生物化学与细胞生物学研究所杨巍维研究组的最新研究成果:UDP-glucose accelerates SNAI1 mRNA decay and impairs lung cancer metastasis。研究首次揭示了糖醛酸代谢通路中的尿苷二磷酸葡萄糖(UDP-Glc)抑制肺癌转移的新功能及作用机制,为肺癌转移的监测和阻断提供了新的靶点和生物标志物。

  肺癌是全世界也是我国发病率和死亡率最高的恶性肿瘤。我国每年肺癌发病人数超过73万,死亡人数超过61万,五年生存率低至16.1%,肺癌已然成为“第一大癌症”与“头号癌症杀手”。转移是肺癌死亡率居高不下的重要原因。传统手术以及术后放化疗可以很好地控制原发肿瘤,但对发生转移的肿瘤往往束手无策。初步统计,95%以上的肿瘤死亡是由肿瘤转移造成的。因此,深入理解肿瘤转移的分子机制不仅有助于肿瘤早期转移的发现,还将为肿瘤转移的阻断提供新的策略,并最终改善癌症患者的预后。

  代谢异常是恶性肿瘤的重要特征。癌症相关基因的突变造成了细胞内多条信号通路的改变,从而影响肿瘤细胞的代谢,并重塑肿瘤细胞,以增强其存活和生长能力。实际上,肿瘤细胞需要改变代谢的状态来应答癌基因信号通路传递的增殖信号。除此之外,异常的肿瘤微环境也能进一步改变肿瘤细胞的代谢表型,从而影响肿瘤的发生发展及对治疗的反应性。然而,这些异常的代谢如何支撑肿瘤转移却鲜为人知。

  杨巍维研究组长期围绕肿瘤代谢异常功能与调控机制,重点关注肿瘤代谢与信号转导的交互调控,旨在揭示肿瘤细胞代谢重编程在肿瘤发生发展中的功能及调控机制,为癌症的诊治、药物研发等提供理论依据及研究基础(Nature 2011, Cell 2012, Mol Cell 2012, Nat Cell Biol 2013, Cell Res 2017, Mol Cell 2018, PLOS Biol 2018, Nat Commun 2016, 2019)。

  在该项研究中,他们发现在表皮生长因子受体(EGFR)激活的条件下,尿苷二磷酸葡萄糖脱氢酶(UGDH)第473位酪氨酸(Y473)发生了磷酸化。UGDH是糖醛酸途径的限速酶,可以催化UDP-Glc反应生成尿苷二磷酸葡萄糖醛酸(UDP-GlcUA);后者可以作为细胞合成糖胺聚糖的原料(图1)。磷酸化的UGDH可与HuR结合,并将UDP-Glc转化为UDP-GlcUA,从而削弱了UDP-Glc对HuR与SNAI1 mRNA结合的抑制,增强了SNAI1 mRNA稳定性及蛋白表达;SNAI1表达的升高增强了肿瘤细胞迁移能力,进而促进了肺癌转移(图2)。

  此外,UDP-Glc水平与肺癌患者的转移复发密切相关。研究者发现,相比原发灶,转移灶中肺癌组织的UDP-Glc水平急剧降低;更为重要的是,发生远端转移的肺癌患者的血液样本中含有更低的UDP-Glc水平。此外,他们还发现肺癌组织中UGDH Y473磷酸化水平越高,发生肺癌转移的几率越大,且患者的预后越差。

  该研究揭示了UDP-Glc抑制肿瘤的新功能,建立了代谢小分子调控蛋白质功能的新模式,建立了细胞代谢与RNA稳定性调控的新连接,为肺癌转移的诊断和治疗提供了首个生化标志物及干预新策略。

  该研究主要由分子细胞卓越中心杨巍维研究组与中科院大连化学物理研究所李国辉研究组合作完成。广州大学副教授王雄军、分子细胞卓越中心博士生刘瑞隆、朱文成、大连化物所楚慧郢为论文共同第一作者,杨巍维和李国辉为该论文的共同通讯作者。该项工作得到分子细胞卓越中心研究员程红、高栋实验室博士生李飞的指导与支持。该研究得到国家自然科学基金委、中科院和中组部青年千人计划的资助,数据收集工作得到分子细胞卓越中心公共技术服务中心分子平台、细胞平台、化学平台、动物平台和GTP中心的支持。

图片.png

图1 糖醛酸途径。糖醛酸途径是糖酵解的分支通路。糖醛酸途径的原料来自于糖酵解的中间代谢产物葡萄糖6-磷酸。经过几步反应最终生成UDP-葡萄糖醛酸。UDP-葡萄糖醛酸与己糖胺途径(Hexosamine Pathway)生成的UDP-乙酰氨基葡萄糖一起用于糖胺聚糖,如透明质酸(Hyaluronic Acid, HA)等物质的生物合成。

图片.png

图2 UDP-Glc调控肺癌转移的模型。UDP-Glc与RNA结合蛋白HuR相互作用,竞争性抑制HuR对SNAI1 mRNA的稳定效应,从而抑制肺癌转移;EGFR信号激活可促使UGDH与HuR结合,并将UDP-Glc转化为UDP-GlcUA,从而解除了它对肺癌转移的抑制。

相关文章

肿瘤细胞葡萄糖感知与代谢调控通路研究领域取得新进展

南方科技大学饶枫团队与天津医科大学赵丽团队、北京生命科学研究所王凤超团队合作在肿瘤细胞葡萄糖感知与代谢调控通路研究领域取得新进展,研究成果以“葡萄糖诱导CRL4COP1-p53信号轴促进糖代谢以驱动肿......

我国科学家实现蓝细菌直接利用二氧化碳合成葡萄糖

2023年6月10日,中国科学院青岛生物能源与过程研究所的研究团队以光自养生物为底盘,基于天然光合作用直接实现了葡萄糖的合成。研究发现以模式蓝细菌藻株聚球藻PCC7942为底盘,敲除其内源性葡萄糖激酶......

揭秘苹果公司从事葡萄糖监测技术的秘密团队

一份关于苹果公司探索性设计小组的简介解释了各小组如何秘密地开发下一代技术,包括经常在传闻中出现的AppleWatch的无创葡萄糖监测装置。苹果公司在其组织内设有许多小组,负责开发新技术和产品,这些技术......

鸟类维持更多脑细胞秘密找到了

鸟类有令人印象深刻的认知能力,有些鸟甚至表现出了高水平的智力。与同等大小的哺乳动物相比,鸟类大脑也包含更多的神经元。那么,鸟类如何维持更多脑细胞呢?现在科学家发现,其背后的秘诀是它们的神经元需要更少的......

人体糖分就能发电,美大学研制新超薄葡萄糖燃料电池

众所周知,葡萄糖是一种人体从食物中吸收的糖。它是我们身体里每个细胞的能量来源。但通过科学家们的不懈努力,它最终有一天或许也能为医疗植入物提供动力。近期,麻省理工学院(MIT)和慕尼黑技术大学(theT......

体内葡萄糖可以发电?功率密度超高超薄葡萄糖燃料电池

麻省理工的科学家们开发了一种仅400纳米厚(发丝的1/100厚)的超薄葡萄糖燃料电池,每平方厘米能产生43微瓦电能,是目前环境条件下葡萄糖燃料电池中功率密度最高的。可耐受600摄氏度高温灭菌,可以覆膜......

“西北风”巧变“粮”二氧化碳成功合成葡萄糖和脂肪酸

通过电化学耦合生物发酵实现将二氧化碳和水转化为长链产品的示意图。科研团队供图科学家又用空气中的二氧化碳“变魔术”了。此前,我国科学家在国际上首次实现了二氧化碳到淀粉的从头合成。那么,二氧化碳除了可以“......

除了“淀粉”外二氧化碳合成“粮食”的新招来了

此前,我国科学家在国际上首次实现了二氧化碳到淀粉的从头合成。那么,二氧化碳除了可以“变”淀粉,还能“变”其他东西吗?答案是肯定的!4月28日,以封面文章形式发表于《自然—催化》的一项最新研究表明,电催......

厦门周大旺团队等揭示糖原累积致肝肿大与肝癌致病机理

恶性肿瘤是威胁人类生命健康的重大疾病,因肿瘤发病机制复杂、早期诊断筛查技术少及缺乏有效的肿瘤早期诊断标志物,绝大数患者就诊已处于肿瘤的晚期阶段。目前,肿瘤学研究也多基于晚期肿瘤组织的临床分析与肿瘤细胞......

葡萄糖心磷脂合成代谢促肝癌辐射抵抗机制获揭示

南方医科大学南方医院放疗科吴德华教授团队揭示葡萄糖—心磷脂合成代谢促肝癌辐射抵抗的新机制。相关研究近日在线发表于《肝脏病学》。代谢重编程是恶性肿瘤的核心特征之一,多种代谢途径在肝细胞癌中历经巨变。放射......