发布时间:2016-11-29 16:24 原文链接: Science惊人发现:细胞重编程并不是我们想象的那样

  本期Science杂志发表的一项研究指出,细胞重编程的发生与我们的想象并不完全一样。西班牙国家癌症研究中心CNIO的研究团队发现,组织损伤是细胞回到胚胎状态的一个关键因素。受损细胞会给旁边的细胞发送信号使其获得胚胎特性,进而促成组织修复。

  iPS细胞重编程为山中伸弥赢得了诺贝尔奖,也打开了再生医学的大门。该技术通过引入OSKM四个基因,使成体细胞回到胚胎状态,转变为多能细胞。Manuel Serrano及其团队分析了在活组织中用OSKM诱导重编程的过程。他们看到的现象改变了迄今为止人们对这一过程的普遍认识。

  “山中伸弥的基因不足以在成体组织高度特化的细胞中诱导重编程或多能性,” CNIO的Lluc Mosteiro解释道。研究表明,组织损伤可以补充OSKM基因的活性,在其中起到了关键性作用。

  组织损伤与重编程之间的关系由促炎症分子IL6介导。如果没有IL6,OSKM基因诱导重编程的效率要低得多。研究人员指出iPS重编程过程应该是这样的:OSKM基因的表达给细胞造成损伤,细胞因此分泌IL6,这种分子诱导旁边一些细胞重编程。他们希望在此基础上增强重编程效率,促进受损组织的再生。

  iPS技术的具体机制和临床应用还存在不少争议。举例来说,越来越多的研究者们相信,源自不同组织的多能干细胞对自己身世有一种“表观遗传学记忆”,这种记忆会显著影响诱导多能细胞(iPSC)的分化。不过Stem Cell Reports杂志上发表的一项最新研究对此提出了挑战。这项研究表明,来源于不同组织的iPSC对重编程同样敏感。

  iPS的安全问题也同样备受关注。iPSC分化而成的细胞到底会不会引起人体的免疫排斥呢?

  为了明确自体hiPSC(人类iPSC)的免疫原性,徐洋教授领导研究团队构建了一个更有力的研究模型。他们在小鼠体内建立了功能性的人类免疫系统,并在这种人源化小鼠模型(Hu-mice)中分析了自体hiPSC衍生细胞的免疫原性。

  Nature Methods杂志在十周年之际推出了纪念特刊,点评了在过去十年中对生物学研究影响最深的十大技术,其中就包括细胞重编程。iPS技术鼻祖山中伸弥教授,在这个特刊中发表文章解读了细胞重编程的命运。山中伸弥教授因这一技术获得了2012年的诺贝尔生理/医学奖。

相关文章

Science惊人发现:细胞重编程并不是我们想象的那样

本期Science杂志发表的一项研究指出,细胞重编程的发生与我们的想象并不完全一样。西班牙国家癌症研究中心CNIO的研究团队发现,组织损伤是细胞回到胚胎状态的一个关键因素。受损细胞会给旁边的细胞发送信......

Science惊人发现:细胞重编程并不是我们想象的那样

本期Science杂志发表的一项研究指出,细胞重编程的发生与我们的想象并不完全一样。西班牙国家癌症研究中心CNIO的研究团队发现,组织损伤是细胞回到胚胎状态的一个关键因素。受损细胞会给旁边的细胞发送信......

丁胜Science,CellStemCell发表细胞重编程重大突破

来自Gladstone研究所的科学家们取得重大的突破,通过采用一些化学物质的组合将皮肤细胞转化成为了心脏细胞和脑细胞。由于以往所有的细胞重编程研究都要求往细胞中添加外源基因,因此这一成果是一个前所未有......

NatureGenetics:细胞重编程迎来革命性生物信息学工具

Duke-NUS医学院、Bristol大学、Monash大学和RIKEN的研究团队开发了一个革命性的计算工具,能够准确预测将一种人类细胞转变为另一种类型所需的细胞因子。这项研究发表在一月十八日Natu......

北大邓宏魁教授CellResearch发表细胞重编程新成果

来自北京大学的研究人员称,他们利用一些小分子化合物成功诱导小鼠神经干细胞和小肠上皮细胞生成了多能干细胞。这项研究发布在12月25日的《细胞研究》(CellResearch)杂志上。北京大学的邓宏魁(H......

Nature:诺奖之后,重大突破细胞重编程技术

来自Weizmann研究所的科学家们发现,从成体细胞中除去一种蛋白质可使得它们有效地回到干细胞样状态。胚胎干细胞具有治疗并治愈许多医学疾病的巨大潜力。这也正是2012年的诺贝尔奖被授予用皮肤细胞生成诱......

Nature:绘制细胞重编程分子路线图

自爱丁堡大学的科学家们在一项新研究中,详细绘制出了皮肤细胞重编程为干细胞的分子路线图。这一研究结果为更有效率地生成这些干细胞,从而深入地了解诸如多发性硬化症、帕金森氏症和肌变性等疾病,以及开发治疗铺平......

Cell头条:细胞重编程研究翻开新篇章

细胞重编程技术自问世以来引发了基础研究和临床研究的多方关注,近期一组研究人员首次证明了小鼠体细胞重编程可由调控分化的基因完成,也就是说无需多能诱导因子,就能诱导出不同的细胞命运,这令细胞重编程这一研究......