发布时间:2016-01-07 15:18 原文链接: 打破合成生物学瓶颈的新程序

  最近,研究人员创建了一种计算机程序,将向全世界打开合成生物学的一个挑战性领域。

  在过去的十年中,研究人员为了开发一种技术,快速、廉价地读写DNA,以合成和操纵多肽和蛋白质,已经花费了数十亿美元的成本。

  但是,当这种技术遇到重复的基因谱时会出错。这包括许多天然和合成的材料,适用范围很广,从从生物粘合剂到合成丝。就像有人与“不可能完成”的智力拼图斗争一样,当大多数构建模块看上去一样时,合成器就难以确定哪块遗传片段放在哪里。

  来自杜克大学的科学家们,根据“旅行商问题(traveling salesman problem,是数学领域中著名的问题之一)”,开发出一种免费可用的计算机程序,消除了这个障碍。合成生物学家现在可以找到最少重复的遗传密码,来构建他们想要研究的分子。研究人员说,他们的这一程序将使那些具有有限资源或专门知识的人,很容易地探索合成的生物材料,这些材料曾经只能用于一小部分领域。相关研究结果发表在2016年1月4日的《Nature Materials》。

  杜克大学生物医学工程系主任生物医学工程教授Ashutosh Chilkoti说:“合成并处理高度重复性的多肽,是一个非常具有挑战性且繁琐的过程,一直是进入该领域的障碍。但是在我们新工具的帮助下,过去研究人员花费几个月的工作,可以在线订购(价格100美元),并在几周内收到基因,从而使得重复性多肽变得更容易研究。”

  每一种蛋白质和多肽都是以2个或多个氨基酸序列为基础的。一个氨基酸(称为密码子)的遗传密码是三个DNA字母。但是,大自然有产生20个氨基酸的61个密码子,从而意味着有多个密码子产生一个给定的氨基酸。

  因为合成生物学家可以从多个密码子得到相同氨基酸,所以,他们可以通过互换不同的密码子达到相同的效果,从而避免繁琐的DNA重复序列。面临的挑战是,寻找最少的、但仍然能制造所需多肽或蛋白质的重复遗传密码。

  Chilkoti说:“我一直认为,有一种潜在的解决方案,肯定有一种数学方法来弄清这一点。我以前给研究生提供了这个问题,但是没有人愿意去解决它,因为它需要将高级数学、计算机科学和分子生物学进行特别的组合。但是Nicholas Tang是正确的人选。”

  在对这个问题进行详细研究后,Chilkoti实验室的博士生Nicholas Tang发现,解决方案是一个版本的“旅行商”的数学问题。这个经典的问题是,寻求单一旅行者由起点出发,通过所有给定的需求点之后,最后再回到原点的最小路径成本。

  写出算法后,Tang对它进行了测试。他创建了一份清单,包含19个流行的重复性多肽,目前正在世界各地的实验室进行研究。将代码通过程序后,他通过商业生物技术outfits(一项任务,对于原来的任何一个代码都是不可能的),发送它们用于合成。

  在没有商业技术的帮助下,研究人员花了几个月的时间构建了细胞用以生产正在研究的蛋白质的DNA。这是一项乏味、重复性的任务——对年轻的研究生来说不是最有吸引力。但是,如果新的程序起作用,这个过程可能会被缩短到几周的时间,而不是等待机器完成工作。

  当Tang收到他的DNA时,它们每个被引入活细胞,以产生像预期所希望的多肽。Chilkoti说:“他在现场一次性制造出了19种不同的聚合物。在以前,这大概要花几十年的研究时间来制造,但是,他能够在一个星期内完成。”

  现在,Chilkoti和Tang正在通过一个简单的网络形式,研制任何人都可以在线使用的新计算程序,从而为合成生物学领域打开了一个新领域。

  Tang说:“这一进展的确使合成生物学领域变得更为大众化。以前,你需要有很多的专业知识和耐心去做重复的工作,但是现在,任何人都可以在线订购它们。我们认为,这可能会打破阻止这一领域发展的瓶颈,并希望招募更多的人进入该领域。”

相关文章

中科院建立新技术揭示细胞间相互作用

细胞是组成人体结构和功能的基本单元,细胞间相互作用对于个体生长发育和器官功能维持至关重要。如何在复杂的体内环境中精准且直观地揭示细胞间相互作用是科学家们致力解决的技术难题。中国科学院分子细胞科学卓越创......

深圳先进院开发出合成生物学关键核心平台性技术

论文截图合成生物学研究就像“造汽车”,通过将各类生物“零部件”设计与组装来构建人工生物系统。生物元件作为“汽车”的基本“零部件”,它的数量和功能制约着合成生物学的发展。针对合成生物学元件匮乏这一关键问......

9日直播|“合成生物学竞赛创新赛”火热来袭

直播时间:2022年7月9日(周六)9:00-21:30直播地址:科学网新浪微博直播间扫码进入科学网新浪微博直播间观看直播科学网微信视频号将同步直播7月9-10日,深圳理工大学(筹)明珠校区将举办首届......

DNA计算机可以测试饮用水是否被污染

由DNA控制的生物计算机提供了一种廉价且简单的方法,来检测饮用水中污染物的浓度。实验表明,计算机科学的逻辑运算可以被设计成DNA,使未来的生物计算机在检测污染物方面的能力更加强大。美国伊利诺伊州西北大......

研究人员利用合成生物学产生易于使用的水下粘合剂

一些海洋生物会分泌粘附蛋白,使其能够粘附在海水下的不同表面。这种具有吸引力的水下粘附特性激发了数十年的研究,以创造用于水下修复或生物组织修复的仿生胶。然而,现有的胶水通常没有理想的粘附力,难以在水下使......

合成生物学让“吃饼干治糖尿病”成为可能

北京大学药学院教授刘涛团队与华东师范大学叶海峰团队利用合成生物学技术开发出了一种新细胞,植入这种工程细胞的糖尿病小鼠,只要吃下特定的氨基酸饼干,就能提高胰岛素水平,进而降低血糖。吃块饼干治糖尿病?这个......

科学家开发出高精度纳米孔蛋白测序法

长期以来,直接读取蛋白质的一级结构存在许多困难。科学家通常会根据基因序列和氨基酸密码子表来“破译”蛋白质的氨基酸序列。由于转录后修饰和翻译后修饰等生命活动的存在,氨基酸序列破译结果并非完全正确,甚至与......

我国迎来定量合成生物学发展重要契机

合成生物学从学术界“出圈”9月底,北京香山,召开了以“定量合成生物学”为主题的学术讨论会(香山科学会议第S64次学术讨论会)。40余位在“系统生物学”、“合成生物学”、“定量生物学”等领域卓有建树的学......

我国迎来定量合成生物学发展重要契机

作者:赵国屏、刘陈立合成生物学从学术界“出圈”9月底,北京香山,召开了以“定量合成生物学”为主题的学术讨论会(香山科学会议第S64次学术讨论会)。40余位在“系统生物学”、“合成生物学”、“定量生物学......

大肠杆菌中高产L高丝氨酸

L-高丝氨酸是一种天然存在的非蛋白氨基酸,可作为医药中间体,具有较好的市场前景。由于生产强度和经济性等原因,L-高丝氨酸的规模化应用受到严重限制。目前国内外尚未有L-高丝氨酸的产业化生产线,L-高丝氨......