细胞通过基因组复制产生自身的拷贝而进行增殖。按理说,DNA复制是所有生命形式中最基本和最保守的机制。破解这一过程是如何最精确地实现的秘密是理解生命秘密的关键。当沃森和克里克在半个多世纪前基于DNA双螺旋结构首次提出DNA的复制方式时,许多人认为将两条DNA链分开进行复制的分子机器(即DNA复制机器,或者说DNA复制复合物)的结构即将出现。然而,鉴于这种分子机器具有比较大的尺寸、三重特性(它由三个引擎组成)和灵活性,它远要比之前想象的复杂得多。利用常规方法无法获得这种DNA复制机器在原子分辨率下的结构信息。近年来,随着高分辨率的低温电镜(cryo-EM)技术的来临,人们才能获得它在原子分辨率下的结构信息。

图片来自Division of Life Science, The Hong Kong University of Science and Technology

  中国北京大学的高宁(Ning Gao)团队和中国香港科技大学的Bik-Kwoon Tye团队合作发表的一系列论文为以前所未有的分辨率破解DNA复制机器的功能打开了大门。第一篇论文于2015年发表在Nature期刊上,它解析出这种被称作微小染色体维持蛋白复合物(minichromosome maintenance complex, MCM蛋白复合物)的DNA复制机器的核心引擎的结构。第二篇论文报道了Cdt1-Mcm2-7复合物(作为MCM双六聚体复合物的前体)的开环结构。如今,第三篇论文发表在Nature期刊上,它详细地说明了起始识别复合物(Origin Recognition Complex, ORC)的原子结构,其中ORC复合物选择全基因组中的复制起始位点以便启动DNA复制。

  在单个细胞(受精卵)经过大约1016个细胞分裂后,每个人就产生了。每次细胞分裂都需要基因组的精确复制,这样每个子细胞都以DNA的形式获得完全相同的遗传信息。

  导致细胞分裂失调的异常DNA复制是许多癌症和发育障碍的原因。基因组复制在维持活的有机体方面同样起着重要的作用,这是因为所有细胞都具有“有效期限”,并且大多数细胞都由保留分裂能力的干细胞进行补充。

  衰老也是这种复制机器发生故障(无论是发生在受损DNA的修复合成中,还是发生在全基因组复制的保真度中)的一般现象。在第三篇论文中,中国北京大学的高宁教授和中国香港科技大学的Bik-Kwoon Tye教授和Yuanliang Zhai博士首次利用低温电镜技术在原子分辨率下解析出启动DNA复制的ORC复合物的结构。这种结构解释了ORC复合物如何能够扫描大量的碱基(DNA由A、T、G和C四种碱基组成),从中选择出正确的位点开始进行DNA复制。据信,不加区分地选择太多的位点可能导致基因组的快速复制并因此导致快速的细胞分裂,这是癌细胞的特征。相比之下,低效地选择位点会导致细胞分裂缓慢,特别是在人类发育的关键时刻,这可能导致发育障碍。

  一个典型的病例是Meier-Gorlin综合征(MGS),这是一种罕见的遗传性侏儒症,其特征是产前发育迟缓和产后比例矮小的身材。有趣的是,与Meier-Gorlin综合征相关的突变位于5个基因(ORC1、ORC4、ORC6、CDT1和CDC6)中,所有的这些基因都是这种DNA复制起始机器(即ORC复合物)的组分。ORC1和ORC4发生突变的患者似乎具有最严重的身材矮小。在第三篇论文中,高宁教授和Bik-Kwoon Tye教授等证实在形成这种DNA复制起始机器的六个亚基中,ORC1和ORC4在复制起始位点的选择机制中起着决定性作用。

  从根本上说,ORC复合物的最重要功能是招募MCM双六聚体复合物到DNA复制起点上,其中MCM双六聚体复合物是将双链DNA分离开的DNA解旋酶的催化核心。在第三篇论文中报道的ORC复合物结合到DNA上时的原子结构揭示出ORC复合物导致的DNA弯曲为DNA插入到MCM解旋酶的开环结构中提供一个停泊表面。再者,它揭示出DNA复制起点是基于它的独特结构而不是基于它的特定碱基序列而被选择出来的。这些新发现有助于解释ORC复合物如何在基因组中的独特位点上选择复制起点,而且这些位点仅由它们的碱基序列是无法预测到的。

  DNA复制是所有有机体的一个决定性特征,而且执行这一功能的DNA复制机器从真菌到植物到人类都是保守的。理解这种DNA复制机器(或任何生物分子机器)的原子结构是至关重要的,这是因为所有的应用技术和工程技术都建立在基础科学/知识的基础之上。比如, DNA复制机器在3埃分辨率下的三维结构图可能有助我们鉴定出更好的癌症治疗靶标,这样就可定制产生适合这种靶标的合成化学物。更重要的是,这些结构有助于我们充分理解分子机器的作用机制,从而有助我们理解因这些分子机器未发挥最佳功能而导致的疾病的根源。为实现这一目标,中国香港科技大学将建立先进的低温电子显微设备,用于研究生物分子机器的高分辨率结构。

相关文章

DNA打印机升级迭代PCR检测相关标准再更新

PCR检测——ISO标准发布近日,由上海海关主导制定的2项ISO标准正式获得国际标准化组织(ISO)通过并发布。这两项ISO标准是:《ISO/TS20224-10:2024分子生物标记分析——食品和饲......

NatureMaterials|南京邮电大学汪联辉/高宇/晁洁智能DNA纳米器件,精确溶栓!

南京邮电大学汪联辉、高宇及晁洁共同通讯在NatureMaterials在线发表题为“AnintelligentDNAnanodeviceforprecisionthrombolysis”的研究论文,该......

Cell:揭示蛋白PARP1形成的超级胶水对DNA损伤的修复至关重要

我们的DNA会不断受到损伤和修复。最严重的损伤发生在DNA断裂成两段时,即DNA双链断裂。它会产生两个松散的DNA末端,如果不加以修复,就会导致细胞死亡。在一项新的研究中,来自德国德累斯顿工业大学生物......

2023年美国质粒DNA制造市场规模达到18968万美元

2023年美国质粒DNA制造市场规模达到18968万美元,预计到2033年将达到115044万美元左右,2024年至2033年复合年增长率为19.57%。访问我们的医疗保健数据智能工具,其中包含100......

超过100个与DNA损伤相关的基因被发现

威康桑格研究所的研究人员及其剑桥大学英国痴呆症研究所的合作者进行了一项新研究,旨在确定细胞健康的生物学原理并确定维持基因组稳定性的关键基因。研究人员通过对近1,000个转基因小鼠品系的系统筛选,发现了......

Nature最新文章:基因测序游戏规则正在被改写,速度翻倍,仅需数小时

超高速测序推动基因组诊断快速发展简化的DNA和RNA测序工作流正在帮助临床医生在几天甚至几小时内提供迅速的有针对性的护理    约十年前,澳大利亚墨尔本的默多克......

Nature发布2024年值得关注的七大技术,首位中国科学家成果入选

2024年1月22日,《自然》发布了2024年值得关注的七大技术——大片段DNA插入、人工智能设计蛋白质、脑机接口、细胞图谱、超高分辨率显微成像、3D打印纳米材料和DeepFake检测。七大技术中,生......

古DNA研究对东亚豹母系遗传历史提出新见解

1月15日,中国科学院古脊椎动物与古人类研究所、西北大学和湖南省文物考古研究院共同主导完成的题为《古DNA准确鉴定湖南老司城遗址残缺头骨以及东亚豹母系遗传历史新见解》(AncientDNAunrave......

癌症“照妖镜”——游离DNA助力肿瘤早期探查

“人体细胞也有生命周期。细胞衰老凋亡后,细胞内的物质会渗透出来。其中,DNA会随之‘崩裂降解’,进入血液,成为游离DNA。”中国医学科学院肿瘤医院防癌科副主任张凯教授告诉科技日报记者,“肿瘤细胞的游离......

研究揭示双加氧酶的低复杂度结构域调控DNA氧化去甲基化

《自然-结构与分子生物学》(NatureStructural&MolecularBiology)在线发表了中国科学院分子细胞科学卓越创新中心杜雅蕊/徐国良团队完成的题为Auto-suppres......