发布时间:2019-05-03 16:03 原文链接: RulesofsiRNAdesignforRNAinterference(RNAi)

General Guidelines

  1. siRNA targeted sequence is usually 21 nt in length.

  2. Avoid regions within 50-100 bp of the start codon and the termination codon

  3. Avoid intron regions

  4. Avoid stretches of 4 or more bases such as AAAA, CCCC

  5. Avoid regions with GC content <30% or > 60%.

  6. Avoid repeats and low complex sequence

  7. Avoid single nucleotide polymorphism (SNP) sites

  8. Perform BLAST homology search to avoid off-target effects on other genes or sequences

  9. Always design negative controls by scrambling targeted siRNA sequence. The control RNA should have the same length and nucleotide composition as the siRNA but have at least 4-5 bases mismatched to the siRNA. Make sure the scrambling will not create new homology to other genes.

Tom Tuschl's rules

  1. Select targeted region from a given cDNA sequence beginning 50-100 nt downstream of start condon

  2. First search for 23-nt sequence motif AA(N<sub>19). If no suitable sequence is found, then,

  3. Search for 23-nt sequence motif NA(N<sub>21) and convert the 3' end of the sense siRNA to TT

  4. Or search for NAR(N<sub>17)YNN

  5. Target sequence should have a GC content of around 50%

A = Adenine; T = Thymine; R = Adenine or Guanine (Purines); Y = Thymine or Cytosine (Pyrimidines); N = Any.

Rational siRNA design

By experimentally analyzing the silencing efficiency of 180 siRNAs targeting the mRNA of two genes and correlating it with various sequence features of individual siRNAs, Reynolds et al at Dharmacon, Inc identified eight characteristics associated with siRNA functionality. These characteristics are used by rational siRNA design algorithm to evaluate potential targeted sequences and assign scores to them. Sequences with higher scores will have higher chance of success in RNAi. The table below lists the 8 criteria and the methods of score assignment.

Criteria

Description

Score

Yes

No

1

Moderate to low (30%-52%) GC Content

1 point


2

At least 3 A/Us at positions 15-19 (sense)

1 point /per A or U


3

Lack of internal repeats (Tm*<20¡ãC)

1 point


4

A at position 19 (sense)

1 point


5

A at position 3 (sense)

1 point


6

U at position 10 (sense)

1 point


7

No G/C at position 19 (sense)


-1 point

8

No G at position 13 (sense)


-1 point

A sum score of 6 defines the cutoff for selecting siRNAs. All siRNAs scoring higher than 6 are acceptable candidates.

*Tm = 79.8 + 18.5*log<sub>10([Na+]) + (58.4 * GC%/100) + (11.8 * (GC%/100)2) - (820/Length)

For example, the Tm can be calculated as follows for the siRNA UUCUCCAGCUUCUAAAAUA

Tm = 79.8 + 18.5*log<sub>10(0.05) + (58.4 * 31.6/100) + (11.8 * (31.6/100)2) - (820/19)

Tm = 32.19

There are two siRNA design tools which implement this siRNA design algorithm: one is offered by Dharmacon, Inc; the other is a downloadable Excel template, written by Maurice Ho at http://boz094.ust.hk/RNAi/siRNA.

References

  1. Elbashir SM et al. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 411:494-498.

  2. Elbahir SM et al. (2001). Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20:6877-6888.

  3. Elbashir SM et al. (2002). Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods. 26:199-213.

  4. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol. 2004 Mar;22(3):326-30.

  5. http://www.basic.northwestern.edu/biotools/oligocalc.html

  6. Maurice Ho, Rational siRNA Design


相关文章

陈玲玲课题组等发表长非编码RNA功能及调控机制综述论文

近期,中国科学院分子细胞科学卓越创新中心研究员陈玲玲课题组等在NatureReviewMolecularCellBiology上,在线发表了题为Generegulationbylongnon-codi......

科学家首次展示RNA剪接分子时钟精确原子模型

  西湖大学生命科学学院施一公教授研究组题为《ATP水解酶/解旋酶Prp2及其激活因子Spp2催化剪接体激活过程中结构重塑的分子机理》的论文,11月27日在《科学》杂志以长文形式发......

曹雪涛/侯晋揭示非编码RNA调控肝细胞癌的潜在机制

肝细胞癌(HCC)是一种致命的恶性原发性肝癌,在与癌症相关的死亡中排名第四,在全球突发事件中排名第六,其5年生存率低。持续的肝损伤会引起慢性肝炎和反复代偿性肝细胞增生,最终导致肝癌的发生。肝癌发生的潜......

Science子刊:一种检测新冠病毒RNA的双色RTLAMP检测方法

新型冠状病毒SARS-CoV-2导致2019年冠状病毒病(COVID-19),如今正在全球肆虐。基于此,人类面临着一项重大的公共卫生挑战。快速检测现有的SARS-CoV-2感染和评估病毒传播至关重要。......

单颗粒冷冻电镜技术解析核糖体组装的动态过程

核糖体是所有生物用来合成蛋白质的分子机器,是生命的基本元件。核糖体包括大亚基和小亚基,两个亚基都是由核糖体RNA和大量蛋白质构成的大型复合物。在真核细胞中,核糖体的组装是一个高度复杂、动态的过程,两个......

安捷伦:用于RNA测序的文库制备与靶向序列捕获解决方案

简化的RNA和DNA测序解决方案,用于精简临床NGS2020年9月1日,北京——安捷伦科技公司(纽约证交所:A)今日宣布推出SureSelectXTHS2RNA试剂盒。该解决方案采用模块化设计,为RN......

一文了解RNA甲基化机制

1.什么是RNA甲基化修饰?我们知道DNA的甲基化修饰是发生在胞嘧啶(C)上的,而最常见的RNA的甲基化修饰是m6A(N6-methyladenosine,6-甲基腺嘌呤)和尿苷化修饰(uridyla......

新冠样本准确度达91.4%陈德喜团队提出基于mNGS的新方法

在大多数严重的急性呼吸道感染病例中,RNA病毒是主要病原体,如2019年12月以来的新冠病毒(SARS-CoV-2),已导致全球超过400万人感染,超过30万名患者死亡[1,2]。mNGS因无需培养、......

如何确定非编码rna的启动子?

长链非编码RNA(Longnon-codingRNA,lncRNA)是长度大于200个核苷酸的非编码RNA。研究表明,lncRNA在剂量补偿效应(Dosagecompensationeffect)、表......

研究人员发现长非编码RNA物种差异加工及其功能演变

从细菌到真核单细胞,从真核单细胞到复杂生命,在物种进化的时间长河里,生命体中每一个可能导致物种演变的功能“单位”都值得科学家探究,比如细胞中广泛地存在功能未知的“暗物质”——长非编码RNA。中科院分子......