发布时间:2019-07-24 12:13 原文链接: 揭示钙调蛋白调节RyR2受体机制

  心肌收缩是由钙离子流入细胞质触发的,最初是由Cav1.2介导的细胞外环境中的钙离子流入触发的,随后是由兰尼碱受体2(ryanodine receptor 2, RyR2)介导的肌浆网钙库中的钙离子流入触发的。兰尼碱受体是已知最大的离子通道,由分子量大于2兆道尔顿(MDa)的同源四聚体组成。80%以上的兰尼碱受体折叠成一种多结构域的细胞质组装体,可感知与各种调节物(从离子到蛋白)之间的相互作用。对RyR2活性的精确调控对于每次心跳都是至关重要的。异常的RyR2活性与危及生命的心律失常相关。

  分子量为17kDa的钙调蛋白(CaM)是一种重要的钙传感器,在大多数钙信号转导事件中起着重要作用。CaM由大致对称的N-末端叶和C-末端叶(下文中的N-叶和C-叶)组成,并且C-叶和N-叶由柔性铰链连接在一起。每个末端叶能够通过两个EF-手(螺旋E-手和螺旋F-手)基序协同性地结合两个钙离子,结合亲和力在微摩尔范围内。在钙离子结合后,两个末端叶中的几个疏水性氨基酸残基的暴露促进CaM与靶序列的结合。CaM与兰尼碱受体直接相互作用,CaM-RyR原聚体的化学计量比为1:1,结合亲和力在纳摩尔范围内。

  然而,CaM对兰尼碱受体的调节是异构型特异性的。CaM显示出对RyR1的双相调节,在纳摩尔水平的钙离子下作为一种较弱的激活剂(apo-CaM),在纳摩尔水平的钙离子下作为一种抑制剂(Ca2+-CaM)发挥作用。相反,apo-CaM对RyR2没有影响或抑制作用,而Ca2+-CaM抑制RyR2。

  CaM还经证实有助于终止钙库过载诱导的钙离子释放。CaM和RyR2之间的异常相互作用与心力衰竭相关,并且对受损的CaM-RyR2相互作用进行校正可能作为一种治疗压力负荷性心力衰竭(pressure-overload-induced heart failure)中致死性心律失常的方法。

  对RyR-CaM复合物的结构表征受限于低分辨率的电子显微镜图,现有的电子显微镜图表明apo-CaM和Ca2+-CaM在RyR1中存在两个重叠但不同的结合位点。一种对应于RyR1的氨基酸残基3614-3643(RyR2的中心结构域中的氨基酸残基3581-3612)的肽结合apo-CaM和Ca2+-CaM。与这种肽结合在一起时的Ca2+-CaM的晶体结构揭示出这种肽的N末端和C末端的疏水性锚点分别容纳Ca2+-CaM的C-叶和N-叶。

CaM和RyR2之间的界面,图片来自Nature, 2019, doi:10.1038/s41586-019-1377-y。

  在一项新的研究中,来自为了阐明CaM对RyR2的调节,来自中国清华大学和加拿大卡尔加里大学的研究人员报道了RyR2的低温电镜(cryo-EM)结构,它们共同地揭示了不同形式的CaM对分子识别特征,并针对CaM对RyR2通道门控的调节提供了新的见解。相关研究结果近期发表在Nature期刊上,论文标题为“Modulation of cardiac ryanodine receptor 2 by calmodulin”。

  这些研究人员通过解析出RyR2在8种条件下的结构,揭示出人CaM对猪RyR2的调控机制。apo-CaM和Ca2+-CaM结合在一个由手柄、螺旋和中心结构域形成的狭长裂缝中,但是它们的结合位点是不同的,但存在一定的重叠。RyR2上的CaM结合位点转移是由钙离子结合到CaM而不是RyR2上来控制的。Ca2+-CaM诱导单个中心结构域的旋转和结构域内转移,从而导致由PCB95和Ca2+激活的RyR2离子通道的孔隙关闭。相比之下,由ATP、咖啡因和钙离子激活的RyR2离子通道的孔隙在Ca2+-CaM存在下保持开放。这表明Ca2+-CaM是RyR2离子通道门控的多种竞争性调节物之一。


相关文章

研究揭示叶绿体蛋白转运马达新功能

叶绿体是植物进行光合作用的细胞器。正常发育过程受到核基因组和叶绿体基因组在多个层次的协同调控。核质互作的分子机理是叶绿体生物发生的核心科学问题之一。光合膜蛋白复合体的反应中心亚基通常由叶绿体基因编码,......

复旦大学650万元采购一套超高分辨率蛋白生物药质谱

复旦大学超高分辨率蛋白生物药质谱分析系统采购国际招标招标项目的潜在投标人应在通过复旦大学采购与招标管理系统(以下简称电子采购平台,网址为:https://czzx.fudan.edu.cn)在线获取招......

揭示新的药物靶点:KRAS蛋白的构象控制位点

控制KRAS:揭示关键癌症蛋白的变构位点研究人员在基因组调控中心和威康萨克研究所利用深度突变扫描技术全面识别了蛋白质KRAS中的变构控制位点,该蛋白质是许多类型的癌症中最常见的突变基因之一。科学家们使......

揭示帕金森病中蛋白聚集的秘密:NEMO蛋白的关键作用

神经退行性疾病,如帕金森病或阿尔茨海默病,与大脑中蛋白质聚集的沉积有关。当细胞废物清除系统存在缺陷或超负荷时,这些聚集物会积累。一种主要与免疫系统信号传导过程相关的蛋白质NEMO可以防止帕金森病中发生......

学者同聚北师大,Urimarker2023共讨新发展

——第三届尿液生物标志物学术研讨会(Urimarker2023)顺利召开11月4日-11月5日,第三届尿液生物标志物学术研讨会(Urimarker2023)于北京师范大学圆满落幕。本次研讨会采用线上线......

Nature:通过全球宏基因组分析,将已知的蛋白家族数量翻倍

想象一下,科学家们用手电筒探索一个黑暗的房间,却只能清楚地辨认出光束范围内的东西。说到微生物群落,他们历来无法看到光束之外的东西---更糟糕的是,他们甚至不知道这个房间有多大。在一项新的研究中,来自美......

Science:新研究揭示短串联重复序列如何影响基因表达

几十年来,科学家们已经知道,“垃圾DNA(junkDNA)”实际上起着至关重要的作用:尽管基因组中的蛋白编码基因提供了构建蛋白的蓝图,但是基因组中的一些非编码部分,包括以前被认为是“垃圾DNA”的基因......

植物叶绿体蛋白,治疗亨廷顿症等蛋白质病的新希望

德国科隆大学的研究人员在NatureAging期刊发表了题为:InplantaexpressionofhumanpolyQ-expandedhuntingtinfragmentrevealsmecha......

研究人员预测和设计揭示无序蛋白结构域的靶标识别机制

中国科大刘海燕教授、陈泉教授课题组与复旦大学王文宁教授合作,采用蛋白质结构预测、序列设计等计算手段与蛋白质互补分析和深度突变扫描、X射线晶体学、NMR等实验结合的方法,揭示了固有无序的4.1G蛋白C端......

Nature:外源核酸诱导的原核生物短Ago蛋白系统发挥功能的分子机理

RNA介导的转录后基因调控在生命个体抵御外源入侵的过程中起到重要作用。Argonaute(Ago)蛋白是存在于古菌、细菌和真核生物中的一种蛋白。它为非编码小RNA提供锚位点,达到降解靶基因或者抑制翻译......