2019年10月21日,北京大学生物医学前沿创新中心(BIOPIC)、生命科学学院白凡课题组与美国亚利桑那大学姚广课题组合作在《美国国家科学院院刊》(PNAS)上发表题为“Graded regulation of cellular quiescence depth between proliferation and senescence by a lysosomal dimmer switch” 的研究论文,首次揭示了溶酶体功能在调控真核细胞静息状态深度(quiescence depth)中扮演“调节开关”的重要角色,同时也阐释了细胞静息状态加深与衰老过程分子机制上的一致性。该研究成果对于理解组织稳态、修复和再生以及机体衰老等重要生理学过程具有重要意义。

  正常生理状态下,机体内的大部分细胞都不进入活跃细胞周期,而处于休眠的状态。其中,可以被生长信号刺激逆转的休眠状态被称为细胞静息,而与之形成对比的是不可逆的细胞衰老状态(senescence)。细胞静息对于机体多种生理过程至关重要(例如,干细胞稳态维持和组织的修复)。另一方面,细胞静息状态的紊乱会导致诸如癌症和衰老等严重病变过程的发生。正如人的睡眠程度有深有浅那样,长期以来的研究表明细胞静息也不是一个均一的状态,而是具有不同等级的静息深度,具体可表现为细胞在接受到生长信号刺激后重新进入增殖状态(proliferation)的难易程度(例如,处于静息深度更深的细胞进入增殖状态所需要的生长信号浓度更高、诱导时间更长)。尽管以往研究对于细胞静息深度有初步的认识,然而对于调控细胞静息状态深度的分子机制以及静息和衰老过程之间的联系还一直不清楚。

细胞的静息状态存在不同的深度

  为了探究以上问题,作者团队首先利用“血清饥饿”培养的方法(0到16天)在体外诱导大鼠胚胎成纤维细胞(REF)由浅及深地达到不同深度的静息状态,并对不同深度静息状态下的细胞进行转录组测序。通过整合和分析转录组数据,作者发现在静息状态由浅及深的过程中细胞基因表达主要呈现出9种主要的模式。特别是随着静息深度的逐步加深,有两簇基因的表达量呈现逐步上升的模式。通过功能富集分析,作者发现这两簇基因都显著地富集到了溶酶体(lysosome)相关的通路上。这些溶酶体相关的基因,包括编码溶酶体相关的酶、激活蛋白、膜蛋白和离子通道蛋白的基因都随着细胞静息状态加深表达量逐步上升。同时,作者发现随着细胞静息状态加深,细胞内溶酶体数量也随之增加。

  溶酶体基因表达和数量的上升让作者猜想溶酶体的整体功能也会随之上升。然而通过对能表征溶酶体功能的自噬流(autophagy flux)进行检测,作者意外地发现随着细胞静息状态加深,溶酶体功能不仅没有增强反而逐渐降低。由此也引出了两个关键问题:溶酶体基因表达和数量的上升与溶酶体功能到底有什么样的关系?是否由于溶酶体功能的降低引起了细胞静息状态的加深?针对第一个问题,作者通过研究静息加深过程中溶酶体的生成和降解,发现随静息加深溶酶体自身降解减缓,导致破损的溶酶体数量上升而功能下降;另一方面,溶酶体基因表达的持续上调促进溶酶体生成,进而部分地补偿了溶酶体功能的降低。针对第二个问题,作者利用抑制剂抑制细胞内溶酶体功能,由此发现细胞进入了更深的静息状态,甚至不可逆的细胞衰老态。另一方面,作者利用外源表达转录因子Mitf的方式增强了细胞内溶酶体的功能,结果发现细胞的静息深度变浅。作者进一步研究发现,溶酶体功能的升高能降低细胞内活性氧自由基(ROS)的浓度防止静息状态加深。反之,溶酶体功能的降低使得细胞内ROS浓度上升进而导致静息状态加深。

图片.png

溶酶体功能在调控细胞静息状态深度中的作用

  综合以上结果,作者阐明了溶酶体功能是控制细胞静息状态深度重要“调节开关”,而该“开关”的工作原理是通过调节细胞内ROS的浓度。最后,作者利用线性回归模型对转录组数据进行进一步挖掘,成功解析出能够表征细胞静息深度的一组特征基因。作者发现这组基因不仅能准确表征体内、体外细胞静息状态的深度,还能准确地预测和区分细胞衰老状态及体内多种组织的老化进程。这个结果反映了细胞深度静息状态与细胞及组织老化具有共同的分子基础,而静息状态加深是衰老过程潜在的过渡状态。

图片.png

表征细胞静息状态的特征基因能准确预测和区分细胞衰老状态及体内多种组织的老化进程

  白凡和姚广为该研究论文的通讯作者。姚广课题组博士生Kotaro Fujimaki以及白凡课题组博士后李若岩为本文的共同第一作者。白凡课题组博士生陈姮玉、匹兹堡大学邢建华教授,以及亚利桑那大学张灏教授也参与该研究的部分工作。该研究工作得到国家自然科学基金和科技部重大专项的资助。

相关文章

诺奖获得者团队PNAS文章被撤回还有多篇被质疑

α-和β-神经素是广泛选择性剪接的突触前细胞粘附分子,被认为组织突触组装。然而,最近的数据显示,在体内海马中,一种神经素亚型Nrxn2的缺失,令人惊讶地增加了兴奋性突触的数量,并增强了它们的突触前释放......

2024年颜宁团队首项研究成果

电压门控钠通道(Nav)在响应膜电位变化时发生构象变化,这种机制被称为机电耦合。2024年2月21日,清华大学/深圳医学科学院颜宁团队在PNAS在线发表题为“Dissectionofthestruct......

双非高校博士首发顶刊PNAS:蚕宝宝如何助力新突破?

除了家人外,陈凯最牵挂的就是他的重要小伙伴——蚕。近日,这个最好的“搭档”为他带来了学术生涯中第一篇PNAS文章。陈凯所在的江苏科技大学生物技术学院、农业农村部蚕桑遗传改良重点实验室谭安江教授团队,首......

薯条还能吃吗?你常吃的高油炸食物竟使焦虑和抑郁危险飙升

抑郁症(MDD),是一种常见的精神障碍,主要表现为情绪低落、兴趣减低、思维迟缓、饮食和睡眠差等症状,MDD患者与心血管疾病、糖尿病和阿尔茨海默病发病率的增加有关,死亡率也较高。迄今,并不清楚抑郁症的病......

吃得少,延长自己和后代寿命,其核心在于溶酶体的形态变化

近日,路易斯安那州立大学的研究人员在Nature子刊NatureAging上发表了题为:Tubularlysosomeinductioncouplesanimalstarvationtohealthy......

PNAS|钱真的能换来幸福吗?收入变化对中年男性……

经济学、心理学和社会科学的一个基本问题是收入是否以及多少收入真的能带来幸福。2023年6月12日,浙江大学张俊森及斯坦福大学李宏彬共同通讯(南方科技大学叶茂亮为第一作者)在PNAS在线发表题为“Twi......

PNAS:逆转神经信号!解密经颅磁刺激治疗重度抑郁的机制

重度抑郁症是如何发生的?人类神经影像学研究表明,重度抑郁症的神经机制不局限于单一的脑区,而可能是全脑神经网络的异常[1]。一些研究发现,前扣带皮层(ACC)和其他参与情绪处理的脑区之间的信号紊乱可能是......

PNAS:新研究揭示网格蛋白在免疫突触中起着关键作用

在一项新的研究中,英国牛津大学肯尼迪风湿病研究所的MikeDustin教授和他的研究团队解释了信息如何在免疫突触中传递。这项研究可能对未来的疫苗开发和免疫疗法开发产生影响。相关研究结果于2023年2月......

喜报|PNAS:颜宁团队发布2023年首个研究成果

电压门控钠通道Nav1.6在中枢神经系统(CNS)神经元放电中起着至关重要的作用。Nav1.6的功能异常可能导致癫痫等神经系统疾病。因此,Nav1.6的特异性抑制剂具有治疗潜力。2023年1月25日,......

2023年,颜宁团队首个研究成果发表!

电压门控钠通道Nav1.6在中枢神经系统(CNS)神经元放电中起着至关重要的作用。Nav1.6的功能异常可能导致癫痫等神经系统疾病。因此,Nav1.6的特异性抑制剂具有治疗潜力。2023年1月25日,......