发布时间:2021-06-17 10:01 原文链接: 拟南芥叶绿体基因组DNA双链断裂修复的全新分子机制

  2021年6月16日,清华大学生命学院/清华-北大生命科学联合中心孙前文实验室在Nucleic Acids Research杂志在线发表题为“RNase H1C与单链DNA结合蛋白WHY1/3和重组酶RecA1在拟南芥叶绿体中协作完成DNA损伤修复 (RNaseH1C collaborates with ssDNA binding proteins WHY1/3 and recombinase RecA1 tofulfill the DNA damage repair in Arabidopsis chloroplasts)”的研究论文,揭示了RNA:DNA hybrids结构协助拟南芥叶绿体基因组DNA双链断裂修复的全新分子机制。

  

  正确修复受损DNA对基因组完整性和个体发育至关重要。作为半自主细胞器,质体必须通过一系列机制来维持自身基因组完整。孙前文实验室之前发现通过维持三股基因组结构R-loop的水平可以保持质体免遭转录-复制对撞导致的基因组断裂(The Plant Cell, 2017;CellReports, 2020),其中定位于叶绿体中的RNase H1家族R-loop移除酶AtRNH1C在这一过程中发挥关键作用。他们之前的结果发现单链DNA结合蛋白WHY1/3与AtRNH1C有潜在的相互作用(Yang et al., The Plant Cell, 2017),而WHY1/3已被证实在DNA断裂修复过程中起非常重要的作用。据此他们探究了AtRNH1C和R-loop参与修复DNA断裂的可能性。他们的结果发现AtRNH1C的缺失(R-loop的积累)使重组酶RecA1在叶绿体中的排布由丝状变为点状(图1A),且抑制WHY1/3在cpDNA断裂位点的积累。随后他们证实WHY1/3和AtRNH1C被招募到相同的基因组位点以促进同源重组(HR)。AtRNH1C或WHY1/3的缺失会显著抑制质体编码的RNA聚合酶(PEP)结合到DNA断裂位点,从而抑制同源重组(HR)并促进微同源介导的双链断裂修复(MMBIR)。随后的遗传学实验证实DNA聚合酶Pol IB与AtRNH1C共同参与DNA损伤修复过程。本研究揭示AtRNH1C与WHY1/3和RecA1共同维持叶绿体基因组完整性,证实RNA:DNA hybrids在促进同源重组修复和叶绿体细胞器发育过程中的积极作用。本研究是继解析AtRNH1C与RHON1调控转录-复制正面对撞、维持叶绿体基因组稳定的分子机制(Yang et al., The Plant Cell, 2017;Yang et al., Cell Reports, 2020)后的又一重要结果。

  

  图1(A)重组酶RecA1在叶绿体中成丝状分布,但RNA:DNAhybrids积累(atrnh1c突变体中)导致其呈点状分布;(B)RNA:DNAhybrids介导叶绿体基因组损伤修复的分子机制模型。

  清华大学生命学院孙前文研究员为本文的通讯作者,课题组博士后王文杰为第一作者,博士研究生李宽、已毕业博士研究生生杨卓、已出站博士后侯全璨和实验室研究助理赵伟对本课题做出贡献。该工作得到科技部国家重点研发计划、国家自然科学基金委以及生命科学联合中心等经费的支持。

  据悉,本项目已结合高通量测序技术,对现有RecA1-GFP系统在不同遗传背景下进行抑制子/增强子筛选且已获得大量相关突变体。这为持续探究本项目中RNA:DNAhybrids影响RecA1丝状结构的分子机制和相应的生物学意义提供了重要遗传材料。孙前文实验室长期招收博士后(https://mp.weixin.qq.com/s/XFk5OCnevgp1uPUg_MHTqQ),欢迎对R-loops与基因组调控方向感兴趣的应(往)届博士毕业生申请。


相关文章

研究揭示叶绿体蛋白转运马达新功能

叶绿体是植物进行光合作用的细胞器。正常发育过程受到核基因组和叶绿体基因组在多个层次的协同调控。核质互作的分子机理是叶绿体生物发生的核心科学问题之一。光合膜蛋白复合体的反应中心亚基通常由叶绿体基因编码,......

遗传发育所玉米籽粒发育机制研究获进展

RNA编辑广泛存在于植物的线粒体和叶绿体中。RNA编辑作为一种RNA转录后加工机制,对于调控基因表达具有重要意义。RNAC-U的编辑是胞嘧啶(C)经过脱氨转变为尿嘧啶(U)的过程。在此过程中,PPR(......

碰一碰,不说话的植物反应很激烈

植物如何对非常微弱的机械性刺激——触碰做出响应是非常有趣的科学问题。以往,我们知道触碰含羞草、捕蝇草等植物,它们会迅速做出运动响应,而大多数植物对触碰的响应需要经过一段时间才能观察到。近日,著名国际期......

植物叶绿体蛋白,治疗亨廷顿症等蛋白质病的新希望

德国科隆大学的研究人员在NatureAging期刊发表了题为:InplantaexpressionofhumanpolyQ-expandedhuntingtinfragmentrevealsmecha......

拟南芥种子休眠机制最新研究进展

近日,中科院植物研究所研究员刘永秀团队发现拟南芥转录后调控的重要分子机器pre-mRNA3'末端加工复合体参与种子休眠调控。相关研究成果发表于《植物杂志》。种子休眠是指完整有活力的种子在适宜环......

Nature:柳振峰团队发现叶绿体蛋白质传送器的组装原理

叶绿体是植物和藻类细胞中可以通过光合作用将光能转化为化学能的细胞器。作为一种由两层膜包被的特殊细胞器,叶绿体含有其自身的基因组,其表达是与核基因组的表达紧密协调的。叶绿体的蛋白质有两种来源,有一小部分......

研究发现叶绿体蛋白质传送器的组装原理

叶绿体是植物和藻类细胞中可以通过光合作用将光能转化为化学能的细胞器。作为一种由两层膜包被的特殊细胞器,叶绿体含有自身的基因组,且其表达是与核基因组的表达紧密协调的。叶绿体的蛋白质有两种来源,有一小部分......

研究发现叶绿体蛋白质传...

叶绿体是植物和藻类细胞中可以通过光合作用将光能转化为化学能的细胞器。作为一种由两层膜包被的特殊细胞器,叶绿体含有其自身的基因组,其表达是与核基因组的表达紧密协调的。叶绿体的蛋白质有两种来源,有一小部分......

研究发现叶绿体蛋白质传送器的组装原理

叶绿体是植物和藻类细胞中可以通过光合作用将光能转化为化学能的细胞器。作为一种由两层膜包被的特殊细胞器,叶绿体含有自身的基因组,且其表达是与核基因组的表达紧密协调的。叶绿体的蛋白质有两种来源,有一小部分......

柳振峰课题组等发现叶绿体蛋白质传送器的组装原理

叶绿体是植物和藻类细胞中可以通过光合作用将光能转化为化学能的细胞器。作为一种由两层膜包被的特殊细胞器,叶绿体含有自身的基因组,且其表达是与核基因组的表达紧密协调的。叶绿体的蛋白质有两种来源,有一小部分......