发布时间:2019-12-17 17:08 原文链接: 小鼠卵子竟然具有一种特殊染色质高级结构?

  在真核生物中,线性的DNA通过多层级地折叠,以一定的三维结构存在于细胞核中。正确的染色质三维结构在基因表达调控和细胞分裂等细胞生命活动中发挥着至关重要的作用。哺乳动物卵子发生中伴随着剧烈的染色体高级结构的重编程。比如伴随小鼠卵泡发育,初级卵母细胞从相对松散、高度活跃转录的状态逐渐转化成转录沉默,染色体高度压缩的状态。

  然而,由于细胞数量和实验手段的限制,染色体三维结构在小鼠卵子发生过程的多时期高分辨率的动态变化过程仍然研究甚少。

  近期,清华大学生命科学学院颉伟研究组与瑞士弗里德希•米斯科舍生物医学研究所 (Friedrich Miescher Institute for Biomedical Research ) Antoine H.F.M. Peters研究组合作在《分子细胞》杂志(Molecular Cell)发表了题为《多梳家族蛋白调控小鼠卵子发生和早期胚胎发育过程中染色体三维结构》(Polycomb group proteins regulate chromatin architecture in mouse oocytes and early embryos)的研究论文,报道了小鼠卵子中存在一种特殊的染色质高级结构(Polycomb Associating Domain,PAD)及其调控机制。

  在这一工作中,研究人员利用sisHi-C技术,系统检测了在小鼠卵子发生各个时期以及早期胚胎发育过程中染色体结构。研究者发现,在原始生殖细胞(PGC)中,染色体三维结构仍呈现为经典状态,具有清晰的拓扑结构域(TADs)和区室结构(compartment)。

  然而伴随着卵泡的发育,完全生长的初级卵母细胞(Full-grown oocytes, FGOs)出现了非经典的特殊染色体三维结构:经典的区室结构明显减弱或消失,与此同时在近端区域出现了新的区室结构。有趣的是,研究人员发现这种相互作用区室结构域与卵子中H3K27me3标记区域高度吻合,因此将这一特殊的结构域命名为“PAD (Polycomb associating domains)”,而相邻的PAD的间隔区域则命名为“iPAD (inter-PAD)”。

  这一特殊的染色体结构在初级卵母细胞发生生发泡破裂(Germinal vesicle break down, GVBD)时迅速消失,而受精后又特异性地呈现在早期胚胎的母本基因组中。母源特异性敲除Eed,PRC2(Polycomb Repressive Complex 2)的重要组成成分,并不会影响卵子中PAD结构的建立,但是显著阻碍了该结构在小鼠早期胚胎中的重建。

  与之相对应的,母源特异性敲除PRC1(Polycomb Repressive Complex 1)重要成分会使小鼠卵子中的PAD结构严重衰减。此外,研究人员通过母源敲除粘连蛋白复合体(cohesin)的重要组成成分Scc1,发现黏连蛋白复合体(cohesin)不参与PAD结构在小鼠卵子发生过程中的建立。最后,基因表达分析提示PAD结构可能发挥着抑制基因转录的功能。

  综上所述,这一工作揭示了小鼠卵子具有一种特殊染色质高级结构,并且多梳家族蛋白参与调控了该结构的建立和维持。


相关文章

图像分析在植物染色体和染色质结构研究中的应用

染色体核型分析对遗传进化和多样化的研究有重要作用,详细的染色体图谱被认为有助于植物育种,并帮助生物学家进行基本的生物学和遗传学研究。图像分析在染色体核型研究中应用广泛,然而通过计算机技术对染色质结构图......

中外科学家合作揭示开花植物染色质浓缩新机制

染色质经过螺旋缠绕浓缩形成染色体的过程,对于维持真核生物细胞正常体积至关重要。之前的研究表明染色质浓缩发生在异染色质区,而常染色质区为方便转录过程则停滞在松散状态不被浓缩。近期,来自清华大学和英国约翰......

Nature:解析人源PBAF染色质重塑复合物结合核小体的结构

清华大学生命科学学院/结构生物学高精尖创新中心/清华-北大生命科学联合中心陈柱成教授研究团队在《自然》杂志在线发表题为“人源PBAF染色质重塑复合物结合核小体的结构”(Structureofhuman......

科学家绘制人类单细胞染色质可及性图谱

在人类细胞中,总长约2米的基因组DNA通过与组蛋白缠绕形成核小体,并经过螺旋折叠等方式盘绕形成染色体进而团聚于直径10微米的细胞核中。在细胞内的DNA需要进行转录等活动的时候,DNA才会从组蛋白中释放......

北京基因组所单细胞中识别染色质类染色质拓扑的算法

基因组DNA和组蛋白以特定的形式高度折叠在细胞核中,这一高级结构即三维基因组学,对细胞核内的诸多生命活动至关重要。基于染色质构象捕获(3C),尤其是高通量技术(Hi-C,ChIA-PET)的发展推动了......

细胞衰老过程中染色质三维结构的变化

细胞衰老是细胞非常重要的生命过程,与疾病发生、个体衰老有着密切的关系。通常认为细胞衰老可以由内在或外在的压力引起,与细胞内持续的DNA损伤密切相关。大量的已有研究表明,无论是个体衰老还是细胞衰老都与细......

第一个完整人类囊胚模型诞生!

人类生命的绽放始于受精卵发育,在受精卵的发育过程中,囊胚(blastocyst)期是胚胎着床前的最后一个时期,此后胚胎将附着于母体子宫壁上进行后续的发育。囊胚期也是胚胎发育过程中的一个关键时期,此时的......

调控染色质相互作用的光遗传学工具被开发

转录调控不仅仅是近端的启动子对基因表达的激活,远端的增强子也对基因的转录调控起到了重要的作用。增强子(enhancer)是一类基因组上的顺式元件。它通过与启动子发生相互作用,从而激活基因表达。这一过程......

转座子活动与染色质高级结构进化奥秘

近日,华中农业大学棉花遗传改良团队发表相关研究论文,首次公布了棉属中比四倍体棉花基因组更大的K2基因组,并对A2基因组和D5基因组进行了升级,发现基因组特异的转座子扩增导致了基因组扩张,通过比较三维基......

籼粳稻耐高温差异染色质三维结构机制被揭示

近日,中国农业科学院生物技术研究所谷晓峰团队和合作者在BMCBiology上发表论文。该项研究首次揭示了籼稻和粳稻染色质三维空间结构在高温胁迫下发生重组的动态变化,为深入研究水稻响应环境胁迫信号的表观......