发布时间:2022-07-19 14:49 原文链接: 研究发现小麦调控耐旱与生长平衡新机制

  近日,中国农业科学院作物科学研究所小麦抗逆分子育种创新研究组研究发现,MPK3-PYL模块可以作为一种负调控机制,有助于小麦平衡干旱胁迫响应和正常的植物生长发育,为小麦的抗旱育种提供了理论基础和基因资源。相关研究成果发表在《新植物学家》(New Phytologist)上。

  据中国农业科学院作科所研究员马有志介绍,蛋白激酶在植物逆境应答中起着重要作用,参与细胞调节和代谢等许多功能。PYR1/PYL蛋白是植物激素脱落酸的胞内受体,正向调节脱落酸信号传递。它也是调控植物脱落酸敏感性和水分利用效率的重要靶标分子,控制其稳定性或活性将直接影响脱落酸信号的传导。丝裂原活化蛋白激酶(MAPK)级联途径可以连接多种环境和植物发育信号。然而,在干旱胁迫下,脱落酸信号转导和MAPK级联相互作用的分子机制仍不明晰。

  研究发现,过表达TaMPK3基因显著降低了小麦的耐旱性和对脱落酸的敏感性。在苗期干旱胁迫条件下,过表达株系表现出较低的存活率;在成株期干旱胁迫条件下,过表达TaMPK3小麦的粒宽和千粒重降低。干扰TaMPK3基因的表达在一定条件下可以提高小麦的耐旱性。MPK3与脱落酸受体蛋白PYL4相互作用可以抑制PYL4的活性,通过降解PYL4蛋白负调节脱落酸信号传递;单子叶植物水稻和双子叶植物拟南芥和大豆中也存在MPK3-PYL互作模块。

  在正常条件下,MPK3对PYL4的抑制会干扰胁迫信号传递,防止胁迫响应对植物正常生长的影响;而干旱胁迫下快速产生的脱落酸可以削弱MPK3介导的PYL4的降解,从而促进脱落酸信号传递并激活植物胁迫响应。为了限制胁迫信号对植物生长的抑制或在胁迫刺激消失后迅速恢复正常生长,植物可能通过增加TaMPK3的水平从而下调脱落酸信号中PYL4的功能。该研究证实了小麦MPK3可以通过促进PYL4的降解来负向调控小麦的耐旱性,可能在小麦干旱胁迫响应与正常生长信号之间起到平衡作用。

  该研究得到了国家重点研发计划项目、国家自然科学基金和海南崖州湾种子实验室的资助。

相关文章

研究发现小麦调控耐旱与生长平衡新机制

近日,中国农业科学院作物科学研究所小麦抗逆分子育种创新研究组研究发现,MPK3-PYL模块可以作为一种负调控机制,有助于小麦平衡干旱胁迫响应和正常的植物生长发育,为小麦的抗旱育种提供了理论基础和基因资......

研究发现小麦调控耐旱与生长平衡新机制

近日,中国农业科学院作物科学研究所小麦抗逆分子育种创新研究组研究发现,MPK3-PYL模块可以作为一种负调控机制,有助于小麦平衡干旱胁迫响应和正常的植物生长发育,为小麦的抗旱育种提供了理论基础和基因资......

一箭双雕:抗“癌”又稳产的小麦有戏了

条锈病被称为小麦的“癌症”,新中国成立以来先后发生过8次大流行,防治后仍累计损失小麦138亿公斤。我国农业农村部将条锈病列为一类农作物病害。7月14日,《细胞》在线发表了西北农林科技大学植物免疫团队历......

成都生物所定位新的小麦穗发育调控基因

小麦(Triticumaestivum L.)是重要的粮食作物之一,随着世界人口增多、耕地面积减少以及气候变化,提升小麦产量是育种的重要目标。小麦穗主要由附着于穗轴两侧交替互生的小穗构成。小......

“世纪麦翁”:耕耘华夏留麦香

在后辈眼中,我国小麦遗传育种学科主要奠基人之一庄巧生院士是严谨的学者、崇德的贤者、睿智的师者,勘称中国小麦学的一代宗师。然而,他对自己一生的评语却很简短:“我一生只做了两件事:一是育成十来个优良小麦品......

世纪耕耘麦香华夏——追记小麦遗传育种学家庄巧生

农历四月,麦穗尚青,正是北方小麦扬花灌浆的关键时刻,而一颗为中国小麦殚精竭虑80余年的心脏却永远停止了跳动。2022年5月8日,中国科学院院士、著名小麦遗传育种学家、中国农业科学院作物科学研究所研究员......

一亩地可卖1500元?“中原粮仓”河南被推上风口

中国北方小麦即将进入收割季节,针对个别地方毁麦开工及网上流传的“割青麦作饲料”情况,2022年5月10日,农业农村部回应称,已要求各地全面排查,对违法违规行为,发现一起处理一起。俄乌冲突以来,全球粮食......

巨星陨落小麦遗传育种学家庄巧生逝世享年105岁

5月9日,我国小麦遗传育种学科主要奠基人之一,著名小麦遗传育种学家,中国民主同盟盟员、中国科学院资深院士,第七届全国政协委员,中国农业科学院作物科学研究所研究员庄巧生先生因病医治无效,于5月8日16时......

《科学》发文:利用这个基因,小麦产量提高

小麦是全球分布最为广泛的粮食作物,世界上有超过40%的人口以小麦为主食。提高小麦产量,事关全球粮食安全。4月10日,科技日报记者从南京农业大学获悉,该校农学院应用植物基因组团队贾海燕教授与美国俄克拉荷......

重拾“记忆”:突破小麦D基因组改良瓶颈

在小麦驯化过程中,人们曾因过度追求某些性状(如产量、面粉品质等)而“弄丢”了另一些重要基因。同时,育种过程中长期使用骨干亲本,多倍化和进化的“瓶颈”导致其遗传基础日益狭窄,与A、B亚基因组相比,小麦D......