发布时间:2022-02-11 16:29 原文链接: 在糖基化酶碱基编辑器的机器学习研究中获进展

碱基编辑技术可实现精确的碱基转换,当前,有三类碱基编辑器被广泛应用,包括胞嘧啶碱基编辑器(cytosine base editor,CBE)、腺嘌呤碱基编辑器(adenine base editor,ABE)、糖基化酶碱基编辑器(glycosylase base editor,GBE)。

  2020年,中国科学院天津工业生物技术研究所研究员毕昌昊带领的合成生物技术研究团队与研究员张学礼带领的微生物代谢工程团队开发出GBE,可实现胞嘧啶到鸟嘌呤的碱基颠换,具有纠正3000多个已知致病单核苷酸变异(single nucleotide polymorphism,SNP)的潜力,这或为主要的遗传疾病如abca4相关性视网膜疾病和X-linked视网膜色素变性等提供治疗方案。

  为评估GBE在多个位点的编辑情况,提高其应用潜力,研究人员运用高通量细胞建模技术,在哺乳动物细胞中进行6400多个基因组靶点的GBE编辑,建立了人工智能AI机器学习模型。研究将收集到的数据用于AI训练,得到了预测碱基编辑效率和结果比例的模型。同时,研究基于获得的序列基序,设计出具有高编辑效率的GBE gRNA,且在293T和HeLa两种细胞中证实了GBE机器学习模型可近似预测任意给定GBE gRNA的编辑结果。此外,科研人员利用该模型预测人类疾病相关点突变的建模和校正的编辑结果,提出一系列具有高预测编辑效率的SNP,进一步为单碱基突变引起的疾病的治疗带来希望。该工作克服了GBE技术的序列依赖问题,显著提高其应用能力。

  相关研究成果发表在Journal of Genetics and Genomics上。研究工作得到国家自然科学基金、国家重点研发计划、天津市合成生物技术创新能力提升行动、天津市自然科学基金项目的资助。

相关文章

在糖基化酶碱基编辑器的机器学习研究中获进展

碱基编辑技术可实现精确的碱基转换,当前,有三类碱基编辑器被广泛应用,包括胞嘧啶碱基编辑器(cytosinebaseeditor,CBE)、腺嘌呤碱基编辑器(adeninebaseeditor,ABE)......

腺嘌呤碱基编辑有望治疗α1抗胰蛋白酶缺乏症

单基因疾病α-1-抗胰蛋白酶缺乏症(Alpha-1antitrypsindeficiency,AATD)是一种常见的遗传性疾病,会影响肝脏和肺部。一项新的研究显示一种新的基因编辑形式能够有效地校正AA......

利用BARBEKO高通量筛选,实现非依赖DNA双链断裂基因敲除

基于CRISPR-Cas的功能性筛选技术为基因功能研究和药物靶点发现提供了有力手段。经典的CRISPR敲除筛选方法依赖于Cas9介导的双链DNA断裂。然而,DNA双链断裂的产生如果修复不及时会造成严重......

Detectseq技术为碱基编辑领域内提供了CBE脱靶位点

2021年6月8日,北大-清华生命科学联合中心、北京大学生命科学学院伊成器教授课题组在NatureMethods杂志发表了题为“Detect-seqrevealsout-of-protospacere......

有望利用ABE治疗单基因突变肝病患者

可编程CRISPR-Cas核酸酶通过在目标位置使双链DNA断裂来实现基因组编辑,但在有丝分裂后的细胞中十分低效。而碱基编辑器是最近开发的基因组工程工具,能在转换率低的组织中进行精确有效的编辑。对于碱基......

碱基编辑研究获进展,为工业菌株改造提供新思路

链霉菌是许多重要天然产物的生产者,其基因组蕴含着大量未被开发的次级代谢生物合成基因簇。传统的基于双链断裂的CRISPR/Cas9技术虽然已应用于链霉菌的基因组编辑,但需提供外源修复模板,且在多位点同时......

多样化CtoT植物碱基编辑器被开发

近日,电子科技大学张勇教授、马里兰大学YiPingQi博士、扬州大学张韬教授课题组合作于《PlantBiotechnologyJournal》发表了题名《Improvedplantcytosineba......

杨力课题组等开发出变形式碱基编辑新系统

5月10日,NatureCellBiology在线发表了中国科学院上海营养与健康研究所研究员杨力课题组与合作者在碱基编辑研究领域发布的最新进展——Eliminatingbase-editor-indu......

上海科技大学等团队构建新型高精准碱基编辑系统

上海科技大学生命科学与技术学院教授陈佳、免疫化学研究所教授杨贝,中科院上海营养与健康研究所研究员杨力与武汉大学医学研究院教授殷昊合作研究构建了一种高精准碱基编辑系统,并依据其特性命名为变形式碱基编辑系......

草莓甜度可控啦基因组编辑能精细调控草莓糖分含量

无性繁殖植物在农业生产中具有重要地位,但是长期无性繁殖导致性状多样性的严重匮乏极大阻碍了无性繁殖作物的育种发展。在育种设计中,对数量性状的精细调控可以避免产生剧烈的性状变化,并且可以极大丰富性状多样性......