Antpedia LOGO WIKI资讯

DNA甲基转移酶与肿瘤的形成和变异

DNA甲基化有其重要的生物学上的意义,他的作用表现在控制基因表达,维护染色体的完整性(integrity)和调节DNA重组的某些环节。DNA甲基化可通过影响癌基因和抑癌基因的表达以及基因组的稳定性而参与肿瘤形成。然而,经过大量试验、研究证实,DNA甲基化是由DNA甲基转移酶(DNMT)催化发生并维持和调控的。目前认为:DNMT活性增高是肿瘤细胞具有特征的早期分子改变,因而受到越来越多的学者关注。DNA甲基转移酶是一种能催化甲基转移至脱氧核糖核酸(DNA)受体的转移酶。DNA甲基化是最早发现的修饰途径之一,大量研究表明,DNA甲基化能引起染色质结构、DNA构象、DNA稳定性及DNA与蛋白质相互作用方式的改变,从而控制基因表达。在甲基转移酶的催化下,DNA的CG两个核苷酸的胞嘧啶被选择性地添加甲基,形成5-甲基胞嘧啶,这常见于基因的5'-CG-3'序列。大多数脊椎动物基因组DNA都有少量的甲基化胞嘧啶,主要集中在基因......阅读全文

DNA甲基转移酶与肿瘤的形成和变异

  DNA甲基化有其重要的生物学上的意义,他的作用表现在控制基因表达,维护染色体的完整性(integrity)和调节DNA重组的某些环节。DNA甲基化可通过影响癌基因和抑癌基因的表达以及基因组的稳定性而参与肿瘤形成。然而,经过大量试验、研究证实,DNA甲基化是由DNA甲基转移酶(DNMT)催化发生并

一文了解甲基化研究领域新进展!

  本文中,小编整理了多篇重要研究成果,共同解读科学家们在甲基化研究领域取得的新进展,分享给大家!图片来源:Vossman/ Wikipedia  【1】Nature:母体维生素C调节DNA甲基化重编程和生殖细胞产生  doi:10.1038/s41586-019-1536-1  发育通常被认为是在

DNA甲基转移酶与肿瘤的形成和变异

  DNA甲基化有其重要的生物学上的意义,他的作用表现在控制基因表达,维护染色体的完整性(integrity)和调节DNA重组的某些环节。DNA甲基化可通过影响癌基因和抑癌基因的表达以及基因组的稳定性而参与肿瘤形成。然而,经过大量试验、研究证实,DNA甲基化是由DNA甲基转移酶(DNMT)催化发生并

DNA甲基转移酶与肿瘤的形成和变异

  DNA甲基化有其重要的生物学上的意义,他的作用表现在控制基因表达,维护染色体的完整性(integrity)和调节DNA重组的某些环节。DNA甲基化可通过影响癌基因和抑癌基因的表达以及基因组的稳定性而参与肿瘤形成。然而,经过大量试验、研究证实,DNA甲基化是由DNA甲基转移酶(DNMT)催化发生并

DNA重组(DNA recombination)技术:工具酶

一、限制性内切酶限制性内切酶(restriction endonucleases,RE)是其中最重要的工具酶之一。它是一类核酸水解酶,能识别和切割双链DNA分子中的特定核苷酸序列。(一)命名原则限制性内切酶大多从细菌中发现,根据来源进行命名,限制酶的第一个字母(大写,斜体)为宿主菌的属名,第二、第三

DNA甲基转移酶3A活性酶连续循环比色法定量检测试剂盒

   DNA甲基转移酶3A活性酶连续循环比色法定量检测试剂盒产品说明书   (中文版)   主要用途   DNA甲基转移酶3A(DNMT3A)活性酶连续循环比色法定量检测试剂是一种旨在使用合成人工合成甲基受体底物分子和抑制复合物,通过DNA甲基转移酶、腺苷同型半胱氨酸核苷酶、腺嘌呤脱氨酶和

DNA甲基转移酶3A活性酶连续循环比色法定量检测试剂盒

  DNA甲基转移酶3A活性酶连续循环比色法定量检测试剂盒产品说明书   (中文版)   主要用途   DNA甲基转移酶3A(DNMT3A)活性酶连续循环比色法定量检测试剂是一种旨在使用合成人工合成甲基受体底物分子和抑制复合物,通过DNA甲基转移酶、腺苷同型半胱氨酸核苷酶、腺嘌呤脱氨酶和黄

DNA甲基转移酶3A活性酶连续循环比色法定量检测试剂盒

   DNA甲基转移酶3A活性酶连续循环比色法定量检测试剂盒产品说明书   (中文版)   主要用途   DNA甲基转移酶3A(DNMT3A)活性酶连续循环比色法定量检测试剂是一种旨在使用合成人工合成甲基受体底物分子和抑制复合物,通过DNA甲基转移酶、腺苷同型半胱氨酸核苷酶、腺嘌呤脱氨酶和

DNA甲基转移酶3A活性酶连续循环比色法定量检测试剂盒...

DNA甲基转移酶3A活性酶连续循环比色法定量检测试剂盒使用说明主要用途DNA甲基转移酶3A(DNMT3A)活性酶连续循环比色法定量检测试剂是一种旨在使用合成人工合成甲基受体底物分子和抑制复合物,通过DNA甲基转移酶、腺苷同型半胱氨酸核苷酶、腺嘌呤脱氨酶和黄嘌呤氧化酶反应系统中生成过氧化氢,使用显色染

DNA甲基化——表现遗传学中DNA的修饰

DNA甲基化是哺乳动物DNA最常见的复制后调节方式之一,是正常发育、分化所必需的,具有重要的生物学意义。在DNA甲基转移酶 (DNAmethyltransferase,DNMT)的作用下,以S—腺苷甲硫氨酸(SAM)为甲基供体,可以将甲基基团转移到基因组DNA胞嘧啶第 5位碳原子(C5)

分子生物学常用实验技术(page 3)

分子杂交技术    互补的核苷酸序列通过Walson-Crick 碱基配对形成稳定的杂合双链分子DNA 分子的过程称为杂交。杂交过程是高度特异性的,可以根据所使用的探针已知序列进行特异性的靶序列检测。杂交的双方是所使用探针和要检测的核酸。该检测对象可以是克隆化的基因组DNA,也可以是细胞总DN

组蛋白研究进展速览!

  本文中,小编盘点了多篇研究报告,共同解析科学家们在组蛋白研究上取得的新成就,与大家一起学习!图片来源:Daniel N. Weinberg et al,doi:10.1038/s41586-019-1534-3  【1】Nature:揭示组蛋白标记H3K36me2招募DNMT3A并影响基因间DN

Nature:组蛋白标记H3K36me2招募DNMT3A并影响基因间DNA甲基化

  催化DNA中CpG甲基化的酶,包括DNA甲基转移酶1(DNMT1)、DNA甲基转移酶3A(DNMT3A)和DNA甲基转移酶3B(DNMT3B)。这些DNA甲基转移酶对于哺乳动物组织发育和体内平衡是必不可少的。它们还与人类发育障碍和癌症有关,这就支持DNA甲基化在细胞命运的指定和维持中起着关键作用

甲基化领域重要研究成果解读!

  本文中,小编整理了近年来科学家们在甲基化研究领域取得的重要研究成果,与大家一起学习!  【1】Science:重大进展!揭示DNA甲基化增强基因转录机制  doi:10.1126/science.aar7854  DNA甲基化(DNA methylation)为DNA化学修饰的一种形式,能够在不

分子生物学常用实验技术(page 1)

第一章质粒DNA 的分离、纯化和鉴定 第二章DNA 酶切及凝胶电泳 第三章大肠杆菌感受态细胞的制备和转化 第四章RNA 的提取和cDNA 合成 第五章重组质粒的连接、转化及筛选 第六章基因组DNA 的提取 第七章RFLP 和RAPD 技术 第八章聚合酶链式反应(PCR)扩增和扩增产物克隆 第九章分

中国学者发表6篇Nature,在生命科学领域取得重大进展

  iNature  2019年9月4日,中国学者在Nature连续发表了6项成果,涉及生命科学,天文学,地球科学等不同的领域,iNature系统介绍这些成果:  【1】混合谱系白血病(MLL)家族的甲基转移酶  -包括MLL1,MLL2,MLL3,MLL4,SET1A和SET1B-在赖氨

朱健康院士PLOS发表植物学新研究

  2015年1月8日,中科院上海生命科学研究院朱健康课题组,在国际著名学术期刊《PLOS Genetics》发表一项最新研究成果,题为“An AP Endonuclease Functions in Active DNA Dimethylation and Gene Imprinting in A

朱健康院士Nature子刊表观遗传学成果

拟南芥5-甲基胞嘧啶(5mC)DNA糖基化酶的ROS1/DEMETER家族,是真核生物中第一个遗传表征的DNA去甲基化酶。然而,ROS1靶基因位点的特征还没有得到很好的理解。10月31日在《Nature Plants》发表的一项研究中,来自中科院上海植物逆境生物学中心和普渡大学的研究人员,对拟南芥C

表观遗传学关于DNA甲基化

表观遗传学是研究表观遗传变异的遗传学分支学科从目前的研究来看,X 染色体剂量补偿、DNA 甲基化、组蛋白密码、基因组印记、表观基因组学和人类表观基因组计划等问题都是表观遗传学研究的内容。其中甲基化是基因组DNA 的一种主要表观遗传修饰形式,是调节基因组功能的重要手段。在脊椎动物中,CpG二核

2015国家自然科学基金:表观遗传学什么是重点

  来自国家自然科学基金委员会的消息,8月18日国家自然科学基金委员会公布了2015年国家自然科学基金申请项目评审结果,其中面上项目16709项、重点项目624项、创新研究群体项目38项、优秀青年科学基金项目400项、青年科学基金项目16155项、地区科学基金项目2829项、海外及港澳学者合作研究基

特异性位点的DNA甲基化的检测方法

相关专题1 甲基化敏感性限制性内切酶 (methylation-sensitive restriction Endonuclease,MS-RE)-PCR/Southern法这种方法利用甲基化敏感性限制性内切酶 对甲基化区的不切割的特性,将DNA消化为不同大小的片段后再进行分析。常使用的甲基化敏感的

表观遗传学和人类疾病

上个世纪50年代初,Watson和Crick建立了DNA分子结构模型,极大程度地促进了生命科学的发展。自此遗传学便成为现代医学研究领域中一个重要的分支。人类已经认识到基因突变可以导致疾病的发生,如慢性进行性舞蹈病(Huntington's chorea, Hc)和囊性纤维化等。近年来

挑出CpG甲基化位点的新策略

  DNA甲基化是基因表达的一种有效的调节器。DNA甲基化主要发生在富含CG的区域,所以称为CpG岛。如CpG岛位于某基因的启动子区域,CpG岛的甲基化会显著降低甚至完全沉默该基因的转录,继而影响蛋白的表达。但是,如何决定一个目标位点的甲基化是否会影响转录,是具有挑战性的。最近,约翰霍普金斯大学的研

DNA甲基化研究方法的回顾与评价(图)

摘要: DNA 甲基化是表观遗传学(Epigenetics)的重要组成部分,在维持正常细胞功能、遗传印记、胚胎发育以及人类肿瘤发生中起着重要作用,是目前新的研究热点之一。随着对甲基化研究的不断深入,各种各样甲基化检测方法被开发出来以满足不同类型研究的要求。这些方法概括起来可分为三类:整体水平的甲

DNA甲基化研究方法的回顾与评价

摘要: DNA甲基化是表观遗传学(Epigenetics)的重要组成部分,在维持正常细胞功能、遗传印记、胚胎发育以及人类肿瘤发生中起着重要作用,是目前新的研究热点之一。随着对甲基化研究的不断深入,各种各样甲基化检测方法被开发出来以满足不同类型研究的要求。这些方法概括起来可分为三类:基因组整体水平的甲

Science解读甲基化组新观点

  在真核生物中,DNA甲基化通常发生在CG中的胞嘧啶上。由于甲基化不会改变DNA序列,它被视为一种表观遗传学标志。DNA甲基化可以在细胞分裂过程中延续到子代细胞,这一机制现在已经相当明确。而这种继承性使DNA甲基化成为储存表观遗传学记忆的潜在途径,这种记忆包括环境或发育过程中的基因调控。不过要证实

表观遗传学修饰对轴突再生调控作用的研究进展

  轴突是神经冲动传递过程中结构与功能的基本单位。无论在中枢抑或是周围神经系统损伤后,诱导有效的轴突再生过程是改善神经功能的基础。现已证实,脊髓损伤后轴突能否再生不仅取决于其固有的生长能力,还取决于轴突所处的环境。神经系统损伤后,神经细胞对轴突再生相关基因的表达动员能力及细胞骨架原料的形成能力是决定

cDNA 文库的构建

            实验材料 λ噬菌体臂 大肠杆菌菌株 用于λ噬菌体的包装抽提物 试剂、试剂

复旦大学发表Nature表观遗传学新文章

  来自复旦大学、中国科学院等机构的研究人员在新研究中揭示出了,从头甲基化转移酶DNMT3A自抑制以及组蛋白H3诱导DNMT3A激活的机制。研究结果发表在11月10日的《自然》(Nature)杂志上。  领导这一研究的是复旦大学上海医学院,生科院的徐彦辉(Yanhui Xu)教授,其早年毕业于清华大

植物所解析RNA甲基化调控果实成熟的作用机制

  DNA甲基化(5mC)和RNA甲基化(m6A)是两种重要的核酸修饰,在基因表达调控中发挥重要作用并参与诸多生物学过程。然而,这两种核酸修饰之间是否存在内在关联性却不清楚。近日,中国科学院植物研究所秦国政研究组和田世平研究组合作,揭示了DNA甲基化可通过调节m6A去甲基化酶基因表达的方式影响番茄果