Antpedia LOGO WIKI资讯

Thescientist:为何我们会变老?如何延缓衰老?

衰老是个神秘的话题,不仅是因为它与疾病的关联,而且这也关系着一个重要的科学问题:为什么细胞生命是有限的?为什么从细胞水平和分子水平上说,我们的身体会逐渐变化?这是一副复杂的拼图,无疑现在还有许多未解的谜题。最新一期the scientist杂志聚焦于这一主题,通过多篇文章解析了基因组、 细胞和整个有机体水平上我们对于衰老的认知,以及衰老和遗传元件,包括long interspersed element-1在内之间的关联等等。 此外这一专辑也介绍了衰老相关的一些有趣研究成果,如调控基因表达改变人体端粒,延缓端粒变短,寿命相关的胶原蛋白研究,以及小鼠发育激素信号,膳食补充剂与寿命的关系等。 为何我们会衰老? 衰老是一生中DNA损伤累积的结果,而DNA损伤累积也会引发癌症、糖尿病、心血管疾病和阿尔茨海默症等神经退行性疾病。科学家们认为,癌症和衰老的根源是一样的,可以说是同一基础过程的两种不同表现。衰老研究的目的并不是消除皱纹......阅读全文

细胞衰老如何应对

  近年来,细胞体外培养造成细胞衰老的报导中指出,所有动物细胞皆有其本身的『海佛烈克极限』,影响其生物寿命长短。从细胞代数学说(也称细胞分裂次数学说)认为,人体细胞在培养条件下平均可培养60代。也就是说,无论是原代细胞或是细胞株,在细胞培养过程中细胞衰老现象是存在且常见,但却容易被操作人员忽略,往往

【盘点】衰老与疾病的关联性研究进展

  人为什么会变老?对于人类来说,如何才能长生不老真的是一个令人着迷的问题。但是至今为止都没有一个让人满意的答案。衰老一直是生命过程中的核心环节,也是影响整个人类社会健康发展的重要问题。目前世界各国均面临着严重的人口老龄化,数据显示到2050年约三分之一的中国人口年龄将超过60岁。因此,深入了解衰老

细胞衰老如何应对

近年来,细胞体外培养造成细胞衰老的报导中指出,所有动物细胞皆有其本身的『海佛烈克极限』,影响其生物寿命长短。从细胞代数学说(也称细胞分裂次数学说)认为,人体细胞在培养条件下平均可培养60代。也就是说,无论是原代细胞或是细胞株,在细胞培养过程中细胞衰老现象是存在且常见,但却容易被操作人员忽略,往往在细

“人造生命” 我国科学家“创造”世界首例单染色体真核细胞

  日前,中科院分子植物科学卓越创新中心/植物生理生态研究所合成生物学重点实验室覃重军研究团队与合作者,在国际上首次人工创建了单条染色体的真核细胞:把酿酒酵母细胞里原本天然的16条染色体,人工融合成单条染色体,且仍具有正常的细胞功能。既改变了染色体的结构,又仍保有生命的“活性”,人工蜕变出一个全新细

《植物学》:曲桂芹小组弄清蕃茄成熟衰老的细胞凋亡机理

  热胁迫诱导的番茄果实细胞程序性死亡(45℃、20min热处理)。a.番茄果实线粒体和细胞质组分细胞色素c变化情况;b.番茄果实不同caspase类似蛋白酶活性的变化;c.番茄果实果皮细胞TUNEL检测出现DNA片段化阳性的细胞百分比。   细胞程序性死亡(Programmed cell d

重磅级文章解读2019年衰老领域研究新进展!

  时至岁末,转眼间2019年已经接近尾声,迎接我们的将是崭新的2020年,在即将过去的2019年里,科学家们在机体衰老研究领域取得了很多显著的成果,本文中,小编就对本年度科学家们在该研究领域取得的重磅级研究成果进行整理,分享给大家!图片来源:Fouquerel et al. (2019). Mol

深度解读:端粒长度与疾病发生的关联

  端粒是真核生物染色DNA末端的特殊结构,早在20世纪80年代中期,科学家们就发现了端粒酶,当细胞DNA复制终止时,在端粒酶的帮助下DNA就能够通过端粒依赖模版的复制,补偿由去除引物引起的末端缩短,因此在端粒的保持过程中,端粒酶至关重要;但随着细胞分裂次数的增加,端粒的长度逐渐缩短,当端粒变得不能

中科院、武汉大学联合发表PNAS新文章

  来自中科院动物研究所、武汉大学的研究人员在新研究中发现了一种新型端粒和端粒酶相互作用蛋白,证实其具有解开端粒G-quadruplex,促进哺乳动物细胞中端粒延伸的功能。研究成果发表在11月26日的《美国科学院院刊》(PNAS)杂志上。   中科院动物研究所的谭铮(Zheng Tan)研究员和武

Nature:小狗助力抗衰老研究

  现在抗衰老研究日趋完善,延缓衰老或有望成为现实。   任何曾养过宠物狗的人都知道,这种关系维持不了多久。十多年或十五年后,狗的皮毛会变灰,腿站不稳。这就像看着一个家庭成员变老一样,但狗老得快得多。狗的衰老为科学们提供了一个寻求延缓人类衰老的机会。   西雅图华盛顿大学健康老龄化和长寿研究所(

Nature:小狗助力抗衰老研究

  任何曾养过宠物狗的人都知道,这种关系维持不了多久。十多年或十五年后,狗的皮毛会变灰,腿站不稳。这就像看着一个家庭成员变老一样,但狗老得快得多。狗的衰老为科学们提供了一个寻求延缓人类衰老的机会。  西雅图华盛顿大学健康老龄化和长寿研究所(Healthy Aging and Longevity Re

盘点:那些“永生”的生物

   永生,更像是诅咒而不是祝颂——蒂索诺斯这才幡然醒悟。这个神话里的特洛伊王子如此俊俏,以致得到曙光女神厄俄斯的眷顾,她恳请宙斯赐予他永生,好让她和他长相厮守。不过宙斯执文害意,蒂索诺斯死不了,但他会衰老。蒂索诺斯渐渐失去了自己姣好的容颜和青春的身体,厄俄斯很快就没了热乎劲。她最终把他独锁深闺,让

科学家发现癌细胞跨越细胞衰老死亡的机制

  癌细胞很可怕。在普通细胞正常走着“生老病死”之路时,癌细胞却不知从哪得来修仙秘籍,走上成“仙”之路,不老不死、还能无限增殖。  但是这本神奇秘籍,也像是金庸书里写的那样难得,除了极少数细胞得窥天机成功羽化,绝大多数细胞都逃脱不了死亡的命运。自然,我们人类也还暂时无从得知,这本书里到底有什么成仙大

端粒效应——揭开染色体与衰老之间的秘密

  衰老是个古老而神秘的话题,长生不老是人类一直追求的目标,而生物体的衰老却是一个必然的过程,是随着时间的推移,机体从构成物质、组织结构到生理功能的丧失退化的过程。  近日,《实验医学杂志》刊发的一项研究表明我们的染色体会随着机体的变老而一起变老。那么我们能不能通过改变染色体来延缓衰老、保持健康长寿

端粒效应——揭开染色体与衰老之间的秘密

  衰老是个古老而神秘的话题,长生不老是人类一直追求的目标,而生物体的衰老却是一个必然的过程,是随着时间的推移,机体从构成物质、组织结构到生理功能的丧失退化的过程。  近日,《实验医学杂志》刊发的一项研究表明我们的染色体会随着机体的变老而一起变老。那么我们能不能通过改变染色体来延缓衰老、保持健康长寿

细胞培养的基本方法-细胞分离技术(二)

1.悬浮细胞 ●计数将要冻存的活细胞。细胞应该处于对数生长期。以大约200~400g离心5分钟沉淀细胞,使用移液管移去上清到最小体积,不要搅乱细胞。 ●以1×107到5×107细胞/ml密度,在包含有血清的冷冻培养基中再次悬浮细胞,或者以0.5×107到1×107在无血清培养基中,再次悬浮细胞。 ●

研究称抑郁症将导致人衰老的更快

  国外媒体报道,根据一项最新研究结果,沮丧抑郁将增加细胞的衰老过程,从而导致我们生物学上的衰老。荷兰阿姆斯特丹自由大学医学中心约辛·费尔赫芬(Josine Verhoeven)博士表示,从生物学角度上看,严重抑郁或者曾经患有抑郁症的人的细胞将看起来比没有抑郁症的人更衰老。   费尔赫芬与美国

端粒酶研究领域的重要成果!

  本文中,小编整理了多篇研究报告,共同聚焦科学家们在端粒酶研究领域取得的重要成果,分享给大家!图片来源:Vimeo  【1】PNAS:促进癌症的端粒酶也能保护健康细胞  doi:10.1073/pnas.1907199116  马里兰大学和美国国立卫生研究院的新研究揭示了端粒酶的新作用。端粒酶在正

2017年3月Cell期刊不得不看的亮点研究

  3月份即将结束了,3月份Cell期刊又有哪些亮点研究值得学习呢?小编对此进行了整理,与各位分享。  1.Cell:长生不老药有望即将来临  doi:10.1016/j.cell.2017.02.031  在一项新的研究中,研究人员发现一种肽能够选择性地寻找和破坏阻止组织正常更新的衰老细胞,并且证

JACC:重磅!科学家有望开发出返老还童的新技术

  我们每个人都会面临衰老,没有人能够让机体停止衰老,尽管近年来科学家们在人类衰老研究上取得了重大突破,但依然很难实现在细胞水平上对机体老化进行逆转;近日,来自休斯敦卫理公会研究所的研究人员通过研究开发了一种新技术,或有望让人类机体细胞恢复年轻状态,相关研究刊登于国际杂志Journal of the

JACC:科学家有望开发出返老还童的新技术

  我们每个人都会面临衰老,没有人能够让机体停止衰老,尽管近年来科学家们在人类衰老研究上取得了重大突破,但依然很难实现在细胞水平上对机体老化进行逆转;近日,来自休斯敦卫理公会研究所的研究人员通过研究开发了一种新技术,或有望让人类机体细胞恢复年轻状态,相关研究刊登于国际杂志Journal of the

Cell子刊解析癌症形成关键信号

  来自Salk生物研究学院的一个科学家小组,确定了一个重要的细胞周期调控信号遭到破坏,导致癌细胞增殖的原因。他们获得的端粒相关研究发现,为找到预防措施对抗癌症、老化及其他疾病提供了一个有潜力的靶点。研究结果发表在7月11日的《分子细胞》(Molecular Cell)杂志上。   端粒是指位

Cell盘点最受关注的癌症综述

  癌症一直被认为是一种逃离正常状态的急速增长疾病,其细胞的生长已经发生了变化。然而尽管这么多年来,科学家们已经发现了这种疾病会随着时间的推进,出现新的突变,但是近期基因组测序研究,以及单细胞分辨率技术却帮助我们解决了癌症是如何变化发展这一谜题。  以下是Cell出版社旗下最多读者点击的癌症综述: 

Cell:最受欢迎的6篇癌症综述

  癌症一直被认为是一种逃离正常状态的急速增长疾病,其细胞的生长已经发生了变化。然而尽管这么多年来,科学家们已经发现了这种疾病会随着时间的推进,出现新的突变,但是近期基因组测序研究,以及单细胞分辨率技术却帮助我们解决了癌症是如何变化发展这一谜题。以下,Cell盘点7篇最受欢迎的癌症综述:  以下是C

用端粒酶诱导人类间充质干细胞永生化实验

端粒酶对染色体的稳定性及决定细胞生命周期起极其重要的作用,主要用于(1)转基因技术的发展(2)基因诱导表达。实验方法原理1. 从动物或人组织中提取的细胞,在体外培养中,细胞会有不同程度的分裂增殖,称为增殖性衰老 。但是有些细胞在自发或其他条件诱导下可突破增殖性衰老,拥有无限增殖的能力,成为永生化细胞

中国科学家已经迈入“改造”生命的大门!

  人类能否创造生命?“上帝”的特权能否交由人类自己掌控?选择与人类有1/3同源基因的真核模式生物酿酒酵母为突破口,将其天然16条染色体融合改造为1条巨大染色体,这个合成生物学领域开展的“异想天开”的结构设计与工程化实施,终于梦想成真!  合成生物学领域里程碑式的突破  中国科学院分子植物科学卓越创

用端粒酶诱导人类间充质干细胞永生化实验

            实验方法原理 1. 从动物或人组织中提取的细胞,在体外培养中,细胞会有不同程度的分裂增殖,称为增殖性衰老 。但是有些细胞在自发或其他条件诱导下可突破增殖性衰老,拥有无限增殖的能力,成

用端粒酶诱导人类间充质干细胞永生化实验

            实验方法原理 1. 从动物或人组织中提取的细胞,在体外培养中,细胞会有不同程度的分裂增殖,称为增殖性衰老 。但是有些细胞在自发或其他条件诱导下可突破增殖性衰老,拥有无限增殖的能力,成

细胞的冻存与冻存细胞的复苏以及细胞的分化、衰老与...-2

三、细胞的分化、衰老与死亡 1.细胞的分化:一个成年人全身细胞总数约1012个,可以区分为200多种不同类型的细胞:形态结构,代谢,行为,功能等各不相同。追根溯源,这么多种细胞均来自一个受精卵细胞。所以,通常把发育过程中,细胞后代在形态、结构和功能上发生差异的过程称为

真核生物基因组-4

(2) 苯丙酮尿症 苯丙酮尿症(PKU)的病因是患者肝细胞缺乏苯丙氨酸羟化酶,使体内的苯丙氨酸不能正常代谢为酪氨酸,导致血清中苯丙酮酸浓度升高。现已知苯丙氨酸羟化酶基因定位于12q24.1,此基因全长约90kb,含13个外显子,在中国人中已发现10余种点突变,这是造成酶活性缺乏的原因。 2.

国际首例人造单染色体真核细胞在我国创建成功

  近日,中国科学院分子植物科学卓越创新中心/植物生理生态研究所合成生物学重点实验室研究员覃重军研究团队及其合作者在国际上首次人工创建了单条染色体的真核细胞。该成果于北京时间8月2日发表在《自然》上,是合成生物学领域具有里程碑意义的突破。人造单染色体酵母与天然酵母细胞对比图,两者形态相似,但染色体的