天津大学最新文章:酵母基因组工程

生物通报道:酿酒酵母染色体的人工合成突破了真核生物基因组重新设计与合成, 将引发基因组工程研究新的高潮. 近期来自天津大学系统生物工程教育部重点实验室,深圳华大基因研究院等处的研究人员以酵母基因组工程为例, 对“自上而下”和“自下而上”两种不同策略的基因组工程研究取得的最新进展进行综述, 并展望其发展前景和趋势. DNA 双螺旋结构和“中心法则”的发现与阐明使人类开始在核酸分子水平上认识生命现象; 基因测序技术的发展和“人类基因组计划”的完成标志着高通量“读”基因组生命信息的实现; 合成生物学发展推动的通过人工设计合成来“写”基因组信息标志着“人造生命”的开始. 人工DNA合成技术和DNA大片段操作技术推动了基因组人工合成研究的进步. 丙型肝炎病毒、脊髓灰质炎病毒、X174噬菌体、T7噬菌体、水稻(Oryza sativa)叶绿体和小鼠(Mus musculus)线粒体等基因组序列先后实现了人工改造与合成, 尤其是活性......阅读全文

DNA双螺旋结构的特征

(1) DNA由两条反向平行的多聚脱氧核苷酸链形成右手螺旋:一条链的5’-3方向是自上而下,而另一条链的3’-5’方向是自下而上,称为反向平行,它们围绕着同一个螺旋轴旋转而形成右手螺旋。(2)由脱氧核糖和磷酸基团构成的亲水性骨架位于双螺旋结构的外侧,而疏水的碱基位于内侧。。(3)位于DNA双链内侧的

酿酒酵母的生长及其DNA的制备

            实验方法原理 用这一方法制备的 DNA 适用于琼脂糖凝胶电泳、Southern 印迹、亚克隆、基因组文库构建、PCR 或其他不需要完整的高分子质量 DNA 的方法。 实验材料

酿酒酵母的生长及其DNA的制备

用这一方法制备的 DNA 适用于琼脂糖凝胶电泳、Southern 印迹、亚克隆、基因组文库构建、PCR 或其他不需要完整的高分子质量 DNA 的方法。本实验来源「分子克隆实验指南第三版」黄培堂等译。实验方法原理用这一方法制备的 DNA 适用于琼脂糖凝胶电泳、Southern 印迹、亚克隆、基因组文库

酿酒酵母的生长及其DNA的制备

 实验方法原理 用这一方法制备的 DNA 适用于琼脂糖凝胶电泳、Southern 印迹、亚克隆、基因组文库构建、PCR 或其他不需要完整的高分子质量 DNA 的方法。实验材料 YAC 克隆的酵母菌落试剂、试剂盒 醋酸铵乙醇酚氯仿TETriton SDS 溶液仪器、耗材 YPD 培养基Sorvall

Chem-Soc-Rev综述酿酒酵母染色体人工合成的技术和方法

  DNA测序技术的迅猛发展,使得我们可以比以往任何时候都更加方便地“阅读”生物体的遗传编码序列,但是很多复杂生命信息很难单纯通过DNA测序获知,如果能够人工合成染色体,实现DNA认知从“阅读时代”到“书写时代”的转变,将有助于对复杂生命现象的理解。近日Chem Soc Rev杂志刊登了天津大学元英

天津大学最新文章:酵母基因组工程

  生物通报道:酿酒酵母染色体的人工合成突破了真核生物基因组重新设计与合成, 将引发基因组工程研究新的高潮. 近期来自天津大学系统生物工程教育部重点实验室,深圳华大基因研究院等处的研究人员以酵母基因组工程为例, 对“自上而下”和“自下而上”两种不同策略的基因组工程研究取得的最新进展进行综述, 并展望

DNA双螺旋结构的基本内容

  DNA双螺旋结构的提出开始便开启了分子生物学时代,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径。1953年,沃森和克里克发现了DNA双螺旋的结构,开启了分子生物学时代,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的

dna双螺旋结构有什么基本特点

dna规则双螺旋结构的主要特点如下:(1)dna分子是由两条反向平行的脱氧核苷酸长链盘旋成的双螺旋结构。(2)dna分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架,碱基排列在内侧。(3)dna分子两条链上的碱基通过氢键连接成碱基对,遵循碱基互补配对原则。

酿酒酵母在酿酒工业上的应用

  酵母菌将葡萄糖、果糖、甘露糖等单糖吸入细胞内,在无氧的条件下,经过内酶的作用,把单糖分解为二氧化碳和乙醇,此作用即发酵。  酿酒酵母乙醇生成途径:葡萄糖是很容易利用的碳源,许多微生物都能够利用葡萄糖发酵生产乙醇。酵母菌在厌氧条件下进行葡萄糖乙醇发酵,发酵过程包括葡萄糖酵解和丙酮酸的无氧降解两大生

我国科学家人工合成4条真核生物酵母染色体

  3月10日,《科学》杂志在封面推介中国科学家的4篇论文,介绍了天津大学、清华大学、深圳华大基因研究院在合成生物学方面的重大突破:完成4条真核生物酿酒酵母染色体的人工合成。这意味着人类在设计并合成复杂人工生命的过程中取得重大进展。我国也成为继美国之后第二个具备真核基因组设计与构建能力的国家。  继

天津工生所酿酒酵母合成甲基酮研究获进展

  甲基酮是一类脂肪酸衍生物,可用作信息素类杀虫剂,也被用于香精、香料、化学合成中间体以及生物燃料调和剂。由于植物提取效率低,甲基酮主要通过烃类的化学氧化合成。代谢工程和合成生物学的发展,为利用微生物平台合成甲基酮提供了可能。  中国科学院天津工业生物技术研究所研究员王钦宏和戴宗杰带领的进化与代谢工

酿酒酵母培养条件实验

实验材料 YPAD 过夜培养物仪器、耗材 SC 减样选择培养基分光光度计实验步骤 一、分光光度测定法1. YPAD 过夜培养物用水 100 倍稀释,而 SC 减样选择培养基过夜培养物 10 倍稀释。2. 用分光光度计测定 600 nm 处的光密度。3. 记住稀释倍数,计算原始培养物的细胞数。二、血细

酿酒酵母培养条件实验

液体培养基中细胞滴度的检测 菌落的影印培养 酵母培养物的储存             实验方法原理 酵母在琼脂或液体培养基中的理想培养温度是30℃,培养皿平板应倒

关于酿酒酵母的应用

  酵母菌的分类一直充满着挑战和争议,在分子生物学技术应用于物种分类之前,经典分类学方法主要从形态、繁殖和生理特征来进行酵母的分类,然而这些指标具有极大的局限性,酵母菌的特征可能随着培养基成分和生长阶段的改变而发生变化。截止到1998年,已描述的酵母菌达到95属,723种,目前荷兰微生物菌种保藏中心

酿酒酵母培养条件实验

液体培养基中细胞滴度的检测 菌落的影印培养 酵母培养物的储存             实验方法原理 酵母在琼脂或液体培养基中的理想培养温度是30℃,培养皿平板应倒

酿酒酵母的形态特征

  酿酒酵母是单细胞,卵圆形或球形,具细胞壁、细胞质膜、细胞核(极微小,常不易见到)、液泡、线粒体及各种贮减物质,如油滴、肝糖等 。 [12] 酿酒酵母生长在麦芽汁琼脂培养基上的酿酒酵母菌落为乳白色,有光泽、平坦、边缘整齐;细胞宽度2.5-10 μm,长度 4.5 -21 μm,长与宽之比为 1 -

天津大学研究成果填补基因组结构变异的技术空白

   天津大学元英进教授带领的合成生物学研究团队在《自然通讯》期刊同期发表《精确控制合成型单倍体和二倍体酵母基因组重排》《体外DNA重排》《杂合二倍体与跨物种基因组重排》三篇研究长文,文中介绍了精确控制基因组重排技术等一系列研究成果。该成果填补了基因组结构变异的技术空白,提高了细胞工厂的生产效率,加

杨焕明教授发表Science文章:二号染色体的人工合成

  2006年,中国科学院基因组研究所的杨焕明教授等人首先完成了所承担的3号染色体短臂末端“北京区域”(短臂由标志D3S3610至端粒区段约3千万个bp)的测序和分析,在Nature杂志公布了人类3号染色体的DNA测序结果和分析说明,时隔11年,包括天津大学、清华大学和深圳华大基因研究院与美国等国家

杨焕明教授发表Science文章:二号染色体的人工合成

  生物通报道:2006年,中国科学院基因组研究所的杨焕明教授等人首先完成了所承担的3号染色体短臂末端“北京区域”(短臂由标志D3S3610至端粒区段约3千万个bp)的测序和分析,在Nature杂志公布了人类3号染色体的DNA测序结果和分析说明,时隔11年,包括天津大学、清华大学和深圳华大基因研究院

DNA双螺旋发现70年:从认识基因走向合成生命

原文地址:http://news.sciencenet.cn/htmlnews/2023/2/494563.shtm

酿酒酵母做细胞工厂,改造后可合成名贵香料原料

近日,中科院大连化学物理研究所研究员周雍进团队在天然产物萜类合成生物学研究中取得新进展。团队在酿酒酵母中构建并优化了二萜香紫苏醇生物合成途径,通过全局调控中心代谢途径,实现了香紫苏醇的高效合成。相关成果发表在《代谢工程》上。 龙涎香是重要名贵高级香料,其实质是抹香鲸肠内分泌物的干燥品。近年来,研

有关酿酒酵母的相关研究

  单染色体酵母  2018年8月《自然》杂志在线发表了一篇论文,覃重军研究团队与合作者在国际上首次人工创建了单条染色体的真核细胞,中国科学家独立创造了全新的自然界不存在的生命。   研究人员历经4年时间,通过15轮的染色体融合,最终成功创建了只有一条线型染色体的酿酒酵母菌株。经过代谢、生理、繁殖功

酿酒酵母的鉴定的简介

  形态与培养特征。将菌种接种到液体培养基中,25℃培养3-7d,观察是否发酵、培养液是否浑浊,是否形成环或岛,沉淀量多少及松紧状况,并制水浸片于显微镜下观察,记录酵母的无性繁殖方式与细胞的形状。将酵母在琼脂培养基上划线,于28℃培养3-4d,观察其菌落形态。  酵母假菌丝的观察。将菌株在25℃活化

关于酿酒酵母的基本介绍

  酿酒酵母(Saccharomyces cerevisiae),又称面包酵母或者出芽酵母。酿酒酵母是与人类关系最广泛的一种酵母,用于制作面包和馒头等食品及酿酒。酿酒酵母的细胞为球形或者卵形,直径5-10μm。其繁殖的方法为出芽生殖。酿酒酵母与同为真核生物的动物和植物细胞具有很多相同的结构,又容易培

酿酒酵母的概念相关介绍

  酿酒酵母(Saccharomyces cerevisiae),又叫面包酵母或芽殖酵母。细胞大小为2.5~10x4.5-21um。一般呈球形、卵圆形、椭圆形,有的呈圆柱状、柠檬形等。酿酒酵母细胞有两种生活形态:单倍体和二倍体。酵母单倍体的繁殖比较简单,一般是出芽生殖,当环境生存压力较大时会死亡。二

天津大学同期刊发两篇Science文章:合成生物学重大成果

  由天津大学系统生物工程教育部重点实验室元英进领导的研究组3月10日在Science杂志上刊发两篇文章,一篇文章报道了全化学合成重新设计的真核生物酿酒酵母十号染色体,长达707 Kb,创建了一种高效定位生长缺陷靶点的方法(pooled PCRTag mapping[PoPM]),解决了合成型基因组

天津大学同期刊发两篇Science文章:合成生物学重大成果

  由天津大学系统生物工程教育部重点实验室元英进领导的研究组3月10日在Science杂志上刊发两篇文章,一篇文章报道了全化学合成重新设计的真核生物酿酒酵母十号染色体,长达707 Kb,创建了一种高效定位生长缺陷靶点的方法(pooled PCRTag mapping[PoPM]),解决了合成型基因组

人工合成4条酵母染色体我国科学家开启“再造生命”新纪元

  大姑娘出嫁——头一回!3月10日出版的国际顶级学术期刊《科学》,以封面的形式同时刊发了中国科学家的4篇研究长文!  由天津大学、清华大学和华大基因分别完成的这4篇长文,介绍了真核生物基因组设计与化学合成方面的系列重大突破:完成了4条真核生物酿酒酵母染色体的从头设计与化学合成——要知道,酿酒酵母总

谈及DNA,仍然只想起双螺旋结构,那你Out了!

  提起DNA,我们还是想起经典的双螺旋结构?那你Out了。利用DNA中的碱基配对原则,科学家们能够利用DNA分子构建出各种各样的结构,而且这些结构具有远非我们能够想象的用途。  DNA是大自然中一种最为神奇的分子之一。从微观而言,它携带的遗传指令是产生地球上几乎任何一种生物所必需的。如今,科学家们

天大化学再造酵母走向应用-自然通讯-研究长文同期发表

  本站讯 2018年5月22日,天津大学元英进教授带领的合成生物学研究团队在《自然通讯》期刊同期发表三篇研究长文,文中介绍了精确控制基因组重排技术等一系列研究成果。该成果填补了基因组结构变异的技术空白,提高了细胞工厂的生产效率,加速了微生物的进化和生物学知识的发现。这是继人工合成酵母染色体打破非生