NatCommun:斑马鱼研究发现脊椎损伤修复新机制

最近,研究者们以斑马鱼为研究对象,发现了神经纤维再生的关键分子,这一发现将为神经损伤患者的治疗提供了新的线索。具体地,这一发现将为脊神经损伤后大脑与肌肉之间连接的重建提供帮助。 对于人与其它哺乳动物来说,脊神经的损伤会导致永久性的瘫痪,然而,斑马鱼在脊神经损伤之后的几周之内就能够恢复正常的运动能力。此前的研究发现斑马鱼能够修复脊椎中受损的神经元连接。而来自爱丁堡大学神经再生中心的研究者们则揭示了其中的分子机制。 研究者们发现,当脊神经损伤发生之后,成纤维细胞会移动至损伤区域,之后,这些细胞会产生一类叫做collagen12的分子,该蚊子能够改变神经纤维外周基质的结构,从而帮助受损的神经纤维在受损部位生长,进而恢复原有的连接。此外,作者还发现这种叫做collagen12的分子受到wnt信号的调节。对这一信号的理解为开发针对脊神经受损患者的相关治疗手段提供了新的线索。 相关结果发表在最近一期的《nature communi......阅读全文

Nat-Commun:斑马鱼研究发现脊椎损伤修复新机制

  最近,研究者们以斑马鱼为研究对象,发现了神经纤维再生的关键分子,这一发现将为神经损伤患者的治疗提供了新的线索。具体地,这一发现将为脊神经损伤后大脑与肌肉之间连接的重建提供帮助。  对于人与其它哺乳动物来说,脊神经的损伤会导致永久性的瘫痪,然而,斑马鱼在脊神经损伤之后的几周之内就能够恢复正常的运动

Cell-Rep:脊椎损伤修复新突破

  脊髓损伤会破坏大脑与脊髓之间的通讯,进而破坏大脑对身体某部分的控制。最近一项研究发现,损伤部位下方的特定类型的神经元反馈在早期恢复和维持恢复的运动功能中起着至关重要的作用。这些新的基础研究结果表明继续使用受影响的身体部位对于脊髓损伤患者的康复成功的重要性。  “在脊髓损伤后,破坏的神经通路不再能

斑马鱼

一、概述斑马鱼是生长在印度、巴基斯坦淡水河流中的一种硬骨鱼(鲤鱼),成年鱼全身仅长4-5厘米,因全身横向分布着一道一道褐色的斑马线而得名。斑马鱼很容易在实验室饲养,一般3个月就可以达到生殖成熟期,雌鱼每次产卵200枚左右,一生可产卵数千枚,斑马鱼所产之卵经24小时即可胚胎发育成熟,仔鱼期只有1个月。

《干细胞》:斑马鱼细胞可修复人视网膜

在最新一期的《干细胞》(Stem Cells)杂志上,来自英国的研究人员发现,斑马鱼眼睛中的一类叫做Muller胶质细胞的特殊细胞对对视网膜的再生至关重要,该细胞还有助于视力的恢复。研究人员预言,这种Muller胶质细胞可能用于恢复人类受损视网膜。 已经知道,视网膜损伤是造成失明的主要原因,引起视

斑马鱼出生就识数!

  意大利科学家发现,斑马鱼幼鱼在孵化后96小时里可以识别不同数量的黑条,研究者表示这一发现表明数字能力可能在新生斑马鱼中是与生俱来的。相关研究3月24日发表于《通讯—生物学》。  过去的研究表明,人类新生儿和新孵化的孔雀鱼、小鸡(孵化时脑已经高度发育的物种)具有数学能力。但在此之前,人们对新生时处

斑马鱼显微CT实验

斑马鱼作为传统的脊椎动物模型已经广泛应用于人类疾病和胚胎发育过程的研究,斑马鱼全基因已经完全清楚,与人类基因组有85%同源性,这意味着在斑马鱼身上进行的实验,其结果很多都适用于人类。斑马鱼与其他实验常用动物相比,具有较高的繁殖率和生长速率,并且其胚胎发育过程是在体外进行的,科研人员通过显微镜直接观察

斑马鱼基础研究

近期,我们收到了很多小伙伴提交的文献奖励申请,其中,有2篇成功吸引了小编的注意,这2篇文章的内容都是斑马鱼研究相关的。我们都知道,斑马鱼是一种常见的模式生物,但是市面上针对斑马鱼的抗体却非常少,我们不仅有一百多种斑马鱼抗体,而且还可以根据客户需求来进行定制生产。下面来看看这2篇文章吧。01标题:Sa

斑马鱼胚胎DNA的制备

材料和试剂1.        蛋白酶K(罗氏03115836001)2.        1M的Tris,pH值8.33.        氯化钾4.        吐温20(10%,EMD4 biosciences,655207)5.        NP40(10%,Merck,492018)设备1.

斑马鱼胚胎细胞的培养

成纤维细胞饲养层 原代培养 细胞系             实验方法原理 通过用链酶蛋白酶除去绒毛膜、用添加成分的 FGF 培养液培养细胞和采用不同的胰蛋白酶消化

转基因斑马鱼的构建

实验概要本实验对斑马鱼导入含 EGFP的质粒,观察其在动物体内的表达情况,在斑马鱼体内,绿色荧光蛋白从原肠胚到出苗期均能在荧光显微镜下观察到绿色荧光。主要试剂EGFP、绿色荧光蛋白基因、pEGFP-N2载体、E.coli主要设备试管、试管架、可调式微量加样器、电泳仪、电泳槽、染色缸、42℃恒温水浴箱

斑马鱼基因编辑技术介绍

斑马鱼又叫蓝条鱼,因为其体表有暗蓝色和银色的类似于斑马一样的条纹而命名。斑马鱼属于鲤科鱼类,同属鲤科的还有我们十分熟悉的鲤鱼、鲫鱼等。斑马鱼的体型较小,成鱼体长约4-6厘米,而且成鱼常年产卵且产卵量大,可达300-1000粒,还是体外受精并发育,因此十分适合进行实验室的大规模养殖与筛选。斑马鱼这种原

人为什么要睡觉?科学家给出进一步答案

  人类一生中有三分之一的时间在睡觉,包括苍蝇、蠕虫甚至水母等无脊椎动物也会睡觉。在整个进化过程中,睡眠对所有具有神经系统的有机体来说都是普遍的,也是必不可少的。然而你有没有想过,为什么我们要睡觉?事实上,科学家多年来一直在寻找答案。据11月18日发表在《分子细胞》杂志上的一项新研究,以色列巴伊兰大

人为什么要睡觉?科学家给出进一步答案

  人类一生中有三分之一的时间在睡觉,包括苍蝇、蠕虫甚至水母等无脊椎动物也会睡觉。在整个进化过程中,睡眠对所有具有神经系统的有机体来说都是普遍的,也是必不可少的。然而你有没有想过,为什么我们要睡觉?事实上,科学家多年来一直在寻找答案。据11月18日发表在《分子细胞》杂志上的一项新研究,以色列巴伊兰大

斑马鱼色素细胞如何形成条带

  一项研究发现,斑马鱼的特征条带反映了这种动物的皮肤上的色素细胞的运动和它们之间的相互作用。尽管科研人员长久以来就注意到了数学模型可以准确地重现动物界的许多特征条带和斑点,动物图案背后的生物过程在很大程度上尚未得到解释。为了更好地理解这些过程,Hiroaki Yamanaka 和Shigeru

斑马鱼人类疾病模型的构建

  斑马鱼是唯一的经过大规模遗传筛选的脊椎动物物种。许多斑马鱼的哺乳动物同源基因已经被克隆,并且发现有相似的功能,证实了斑马鱼作为人类疾病模型的可行性。通过Tol2转座子技术、基因突变(插入诱变、ENU化学诱变)、基因敲除(TALEN,CRISPER)等技术,构建在特点靶点标记荧光蛋白的转基因品系及

Science重要发现:炎症促进再生

  发表在最新一期(11月8日)《科学》(Science)杂志上的一篇报告揭示斑马鱼具有非凡的大脑修复能力秘密在于炎症。斑马鱼大脑的神经干细胞表达了一种炎症信号分子的受体,促使细胞增殖并发育成新神经。   约翰霍普金斯大学神经病学和神经科学教授明国丽(Guo-Li Ming,未参与该研究)说:

一个抑癌基因可抑制斑马鱼再生

  总有一天,再生医学会让医生能够矫正先天性畸形,再生受损的手指,甚至修补一颗受损的心脏。但是要做到这一点,他们将必须对付身体的抗癌安全系统。现在,来自加州大学旧金山分校(UCSF)的研究人员,发现了一个人类基因,可能是这种权衡的一个关键介质,阻断肿瘤和健康的再生。延伸阅读:斑马鱼神经元助力人类出生

扫描电镜揭秘斑马鱼与血栓研究的关系(一)

血液是身体里"流动的长河",如果生命的长河被血栓堵塞,能想象后果会有多么严重吗? 目前,我国因血栓性疾病导致的死亡人数已占全球因血栓性疾病导致的死亡人数的 51% ,远超过肿瘤、传染性疾病、呼吸系统疾病等。因不易察觉,血栓被称为最隐蔽的杀手。斑马鱼(zebrafish),因其全身布满多条深蓝色条纹似

Nature揭示再生科学重要发现

  在发表于6月19日《自然》(Nature)杂志上的一项新研究中,由加州大学圣地亚哥医学院的研究人员领导的一个科学家小组,对斑马鱼心室损伤后心脏再生过程中发生的动态细胞事件进行了视频监控。他们的研究发现证实了,心脏中的多种细胞系比以前认为的更具可塑性,能够转变为新的细胞类型。   加州大学圣地亚

定向基因编辑改写斑马鱼的DNA

  斑马鱼是基因研究中一种常用的模式生物。现在科学家可以对它们的基因组进行定向的编辑。   据Nature近日报导,在对脊椎动物和人类疾病的研究中,斑马鱼是一种重要的模式生物。它的卵是透明的,在体外孵化,它的繁殖周期很短,生长速度快,这些都意味着,很适合在生物生存的条件下对它的胚胎进行密切研究。而

斑马鱼平台助力HSP发病机理研究

遗传性痉挛性截瘫(HSP)又称家族性痉挛性截瘫,是一种神经系统退行性变性疾病。其病理改变主要是脊髓中双侧皮质脊髓束的轴索变性或脱髓鞘,以胸段最重。 临床表现为双下肢肌张力增高,腱反射活跃亢进,病理反射阳性,呈剪刀步态。2018年5月11日,中国国家卫生健康委员会等5部门联合制定了《第一批罕见病目录》

解锁电鳗发电之谜,让斑马鱼发电

研究人员证实,他们发现的基因控制区只控制肌肉中钠通道基因的表达,而不控制其他组织。电鱼和电鳗一样,可以根据种类、性别、甚至个体来区分其他电鱼,这要归功于它们的电器官,它还允许它们传输和接收类似于鸟叫声的信息。最近发表在《科学进展》(Science Advances)上的一项研究描述了微小的基因改变是

斑马鱼造血干细胞生成机理

法国家日前通过对斑马鱼胚胎进行即时监控,发现了其造血的生成机理。这一成果为医学界研究白血病疗法提供了新思路。该研究由法国国家中心和巴斯德研究所共同完成。研究人员在最新一期英国杂志上报告说,他们采用即时成像对斑马鱼的胚胎进行了观察。结果发现,斑马鱼胚胎主动脉的部分内皮细胞先是发生卷曲,随后蜷缩成一团,

武汉研究斑马鱼揭示器官再生之谜

  身长约4厘米,具暗蓝与银色纵条纹 基因与人类的相似度达87% 心脏能再生 约2000种人类疾病能出现在其身上 胚胎在体外发育,且完全透明 一种经济实惠的实验动物,一对斑马鱼一次可生产300只“鱼宝宝”   “斑马鱼的基因与人类相似度高达87%,人类无法长出第二个心脏,而斑马鱼的心脏却能再生

方案27.6-斑马鱼胚胎细胞的培养

成纤维细胞饲养层 原代培养 细胞系             实验方法原理 通过用链酶蛋白酶除去绒毛膜、用添加成分的 FGF 培养液培养细胞和采用不同的胰蛋白酶消化

斑马鱼研究全套装备配置清单

斑马鱼由于养殖方便、繁殖周期短、产卵量大、胚胎体外受精、体外发育、胚体透明等特点,已成为生命科学研究的新宠,是最受重视的脊椎动物发育生物学模式之一。你的实验室在做斑马鱼研究吗?斑马鱼研究需要哪些工具?你知道斑马鱼研究的最强装备吗?服务全球科学家48年历史,WPI为您供全套的斑马鱼研究工具,包括斑马鱼

研究揭示斑马鱼“自我定位”神经回路

斑马鱼幼鱼能够弄清它们在哪里,去过哪里,以及如何回到原来的位置。幼体斑马鱼在被洋流推离航道后如何追踪自己的位置并导航呢?科学家发现,这与一种多区域的大脑回路有关。相关研究近日发表于《细胞》。 “我们研究了一种行为,在这种行为中,斑马鱼幼鱼必须记住过去的位移,以准确地保持它们的位置,因为水流可能把

Science:意外!甲状腺激素让我们失去心脏再生能力

  尽管在美国每年发生的73.5万起心脏病发作中,大多数患者都存活了下来,但是与体内许多其他细胞不同的是,心脏细胞一旦遭受损伤,就不能够再生。在一项新的研究中,来自美国、澳大利亚和法国的研究人员发现,这个问题可追溯到我们最早的哺乳动物祖先,这些哺乳动物祖先可能失去了再生心脏组织的能力来换取温血状态(

再生医学新进展-人类抗癌基因抑制斑马鱼组织再生

  再生医学或许可以在未来某一天帮助医生进行先天性畸形的修复,帮助病人重新长出受伤的手指,甚至是进行心脏修复。但要实现这一切,就必须考虑如何攻破机体自身的抗癌保护系统。最近,来自美国UCSF的研究人员发现了一个人类基因可能是这一保护系统中一个重要部分,既能阻止癌症发展又会阻断健康组织的再生。  在这

脑功能障碍是脑发育缺少“修理工”

  南京医科大学顾爱华副教授通过研究发现,如果脑发育过程中缺少了一种名为OGG1(8-羟基鸟嘌呤DNA糖苷酶)的基因,就会形成脑损伤。这为大脑保护性药物研发及先天性神经系统疾病的诊断提供了新的依据。日前,该项研究获得国家发明专利授权。   OGG1的作用相当于“修理工”,它能够识别DNA损伤并启动