PKC信号通路图

PKC系统,又称为磷脂肌醇信号途径。系统由三个成员组成:受体、G蛋白和效应物。Gq蛋白也是异源三体,其α亚基上具有GTP/GDP结合位点,作用方式与cAMP系统中的G蛋白完全相同。该系统的效应物是磷酸肌醇特异的磷脂酶C-β(phosphatidylinositol-specific phospholipase C-β, PI-PLCβ),此处的β表示一种异构体。在这一信号转导途径中,膜受体与其相应的第一信使分子结合后,激活膜上的Gp蛋白(一种G蛋白),然后由Gq蛋白激活磷酸脂酶Cβ (phospholipase Cβ, PLC), 将膜上的脂酰肌醇4,5-二磷酸(phosphatidylinositol biphosphate, PIP2)分解为两个细胞内的第二信使:二酰甘油( diacylglycerol, DAG)和1,4,5-三磷酸肌醇(IP3)。IP3动员细胞内钙库释放Ca2+到细胞质中与钙调蛋白结合,随......阅读全文

PKC信号通路图

PKC系统,又称为磷脂肌醇信号途径。系统由三个成员组成:受体、G蛋白和效应物。Gq蛋白也是异源三体,其α亚基上具有GTP/GDP结合位点,作用方式与cAMP系统中的G蛋白完全相同。该系统的效应物是磷酸肌醇特异的磷脂酶C-β(phosphatidylinositol-specific phosph

mTOR信号通路图

mTOR可对细胞外包括生长因子、胰岛素、营养素、氨基酸、葡萄糖等多种刺激产生应答。它主要通过PI3K/Akt/mTOR途径来实现对细胞生长、细胞周期等多种生理功能的调控作用。正常情况下,结节性脑硬化复合物-1(TSC-1)和TSC-2形成二聚体复合物,是小GTP酶Rheb(Ras-homolog

Jak/Stat信号通路图

JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。信号传递过程如下:细胞因子与相应的

Jak/Stat信号通路图

JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。信号传递过程如下:细胞因子与相应的

SAPK/JNK--信号通路图

c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)又被称为应激活化蛋白激酶(stress-activated protein kinase,SAPK),是哺乳类细胞中MAPK的另一亚类。目前,从成熟人脑细胞中已克隆了10个JNK异构体,它们分别由JNK1、JNK2和JN

MAPK/Erk信号通路图

MAPK,丝裂原活化蛋白激酶(mitogen-activated protein kinases,MAPKs)是细胞内的一类丝氨酸/苏氨酸蛋白激酶。研究证实,MAPKs信号转导通路存在于大多数细胞内,在将细胞外刺激信号转导至细胞及其核内,并引起细胞生物学反应(如细胞增殖、分化、转化及凋亡等)的过程中

SAPK/JNK信号通路图

c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)又被称为应激活化蛋白激酶(stress-activated protein kinase,SAPK),是哺乳类细胞中MAPK的另一亚类。目前,从成熟人脑细胞中已克隆了10个JNK异构体,它们分别由JNK1、JNK2和JN

B-Cell-Receptor-信号通路图

B cells produce immunoglobulins (Ig, antibodies) that specifically bind antigen molecules. B cells first produce a membrane-bound form of immunogl

NFκB信号通路图

NF-kappaB是一个大家族,包括:RelA(p65)、c-Rel、RelB、NF-kappaB1 (p50/p105)、NF-kappaB2 (p52/p100)。其中以RelA(p65)研究最为深入。通常所说的是左边的经典途径,大致意思是这样:非激活状态下,RelA(p65)与一种名为Ikap

磷酸脂酶信号通路图

在这一信号转导途径中,膜受体与其相应的第一信使分子结合后,激活膜上的Gq蛋白(一种G蛋白),然后由Gq蛋白激活磷酸脂酶Cβ (phospholipase Cβ, PLC), 将膜上的脂酰肌醇4,5-二磷酸(phosphatidylinositol biphosphate, PIP2)分解为两个细胞内

Toll样受体信号通路图

TLR 家族成员(TLR3 除外)诱导的炎症反应都经过一条经典的信号通路(图 1),该通路起始于TLRs 的一段胞内保守序列—Toll/IL-1 受体同源区(Toll/IL-1receptor homologousregion,TIR).TIR可激活胞内的信号介质—白介素1受体相关蛋白激

T-Cell-Receptor-信号通路图

The  T Cell Receptor plays a key role in the immune system. The specificity  of the receptor is governed by the binding site formed from the mature  a

血管生成(Angiogenesis)信号通路图

血管生成是通过人体中存在的诸多互补和复杂的信号途径调节的.血管内皮生长因子(VEGF)-血管内皮生长因子受体(VEGFR)、血管生成素(Ang)-Tie2轴和Dll4-Notch这3个复杂的、相辅相成的信号传导通路可在调节血管生成中发挥重要作用.VEGF与内皮细胞上的两种受体KDR和Flt-1高亲和

TGFβ/Smad-信号通路图

TGF-β(转化生长因子-β)信号通路在调控干细胞活性和器官形成中发挥着重要的作用,当TGF-β信号通路各成员活性未激活时,体内会自发性发生多种癌症,这表明TGF-β定向调节干细胞对癌症形成也具有不可或缺的功能。TGF-β超家族包含接近30个生长和分化因子,其中有TGF-β s,活化素(activi

G蛋白偶联受体信号通路激活的MAPK/Erk信号通路图

研究证实,受体酪氨酸激酶、G蛋白偶联的受体和部分细胞因子受体均可激活ERK信号转导途径。如:生长因子与细胞膜上的特异受体结合,可使受体形成二聚体,二聚化的受体使其自身酪氨酸激酶被激活;受体上磷酸化的酪氨酸又与位于胞膜上的生长因子受体结合蛋白2(Grb2)的SH2结构域相结合,而Grb2的SH3结构域

G蛋白偶联受体信号通路激活的MAPK/Erk信号通路图

研究证实,受体酪氨酸激酶、G蛋白偶联的受体和部分细胞因子受体均可激活ERK信号转导途径。如:生长因子与细胞膜上的特异受体结合,可使受体形成二聚体,二聚化的受体使其自身酪氨酸激酶被激活;受体上磷酸化的酪氨酸又与位于胞膜上的生长因子受体结合蛋白2(Grb2)的SH2结构域相结合,而Grb2的SH3结构域

p38-MAPK信号通路图

p38 MAPK是1993年由Brewster等人在研究高渗环境对真菌的影响时发现的[8]。以后又发现它也存在于哺乳动物的细胞内,也是MAPKs的亚类之一,其性质与JNK相似,同属应激激活的蛋白激酶。目前已发现p38MAPK有5个异构体,分别为p38α(p38)、p38β1、p38β2、p38γ、p

eIF2的调控信号通路图

mTOR可对细胞外包括生长因子、胰岛素、营养素、氨基酸、葡萄糖等多种刺激产生应答。它主要通过PI3K/Akt/mTOR途径来实现对细胞生长、细胞周期等多种生理功能的调控作用。正常情况下,结节性脑硬化复合物-1(TSC-1)和TSC-2形成二聚体复合物,是小GTP酶Rheb(Ras-homolog

eIF2的调控信号通路图

mTOR可对细胞外包括生长因子、胰岛素、营养素、氨基酸、葡萄糖等多种刺激产生应答。它主要通过PI3K/Akt/mTOR途径来实现对细胞生长、细胞周期等多种生理功能的调控作用。 正常情况下,结节性脑硬化复合物-1(TSC-1)和TSC-2形成二聚体复合物,是小GTP酶Rheb(R

SAPK/JNK信号通路图涉及的信号分子主要包括

CrkL,Shc,GRB2,JNK,JNK1,JNK2,JNK3,MKK4,MKK7,IRS-1,c-Abl,Bax,CrkII,TAK1,ASK1,MAPKKKs,HPK1,GCK,MEKK1,MEKK4,MLK2,MLK3,DLK,TpI-2,TAO1,TAO2,PI3Kγ,c-Jun,SOS,

自噬的信号通路图的组成部分

自噬的信号通路图可以分成2部分:巨自噬(Macroautophagy)和线粒体自噬(Mitophagy)。这2部分的又有重叠。

Notch信号通路的通路组成介绍

Notch基因编码一种膜蛋白受体,由Notch受体、Notch配体(DSL蛋白)及细胞内效应器分子(CSL-DNA结合 蛋白)三部分组成。(1)Notch受体:分别为Notch 1.2.3.4种;其结构:胞外区(NEC)、跨膜区(TM)和胞内区(NICD/ICN)三部分;胞外区(NEC):其结构域包

信号通路的概念

信号通路,信号转导,signal pathway狭义能够把胞外的分子信号经过细胞膜传到细胞胞内然后发生效应的一系列酶促反应通路。基础科研中不限定从胞外到胞内,指信息从一个分子传到另外的分子的过程。信号通路本质上就是前人研究的比较透彻的一些分子,包括他的调控方式的一个总结。

信号通路的分类

一是当信号分子是胆固醇等脂质时,它们可以轻易穿过细胞膜,在细胞质内与目的受体相结合;二是当信号分子是多肽时,它们只能与细胞膜上的蛋白质等受体结合,这些受体大都是跨膜蛋白,通过构象变化,将信号从膜外domain传到膜内的domain,然后再与下一级别受体作用,通过磷酸化等修饰化激活下一级别通路。

Wnt/βcatenin信号通路

大鼠肝癌模型法             实验方法原理 1. Wnt/β-catenin信号转导通路是一条在生物进化中极为保守的通路。在正常的体细胞中,β-catenin只是作为一

Hippo信号通路概述

Hippo 信号通路,也称为Salvador / Warts / Hippo(SWH)通路,命名主要源于果蝇中的蛋白激酶Hippo(Hpo),是通路中的关键调控因子。该通路由一系列保守激酶组成,主要是通过调控细胞增殖和凋亡来控制器官大小。Hippo信号通路是一条抑制细胞生长的通路。哺乳动物中,Hip

Wnt/βcatenin信号通路

Wnt /β-catenin信号转导通路是一条在生物进化中极为保守的通路。在正常的体细胞中,β-catenin只是作为一种细胞骨架蛋白在胞膜处与E-cadherin形成复合体对维持同型细胞的黏附、防止细胞的移动发挥作用。只有当细胞外Wnt信号分子与细胞膜上特异性受体Frizzled蛋白结合激

Wnt/βcatenin信号通路

大鼠肝癌模型法             实验方法原理 1. Wnt/β-catenin信号转导通路是一条在生物进化中极为保守的通路。在正常的体细胞中,β-catenin只是作为一

Wnt信号通路的信号途径介绍

经典的Wnt途径(Wnt /β-连环蛋白途径)导致基因转录的调节,并且被认为部分地由SPATS1基因负调节。Wnt /β-连环蛋白途径是Wnt途径中的一种,该途径会导致β-连环蛋白在细胞质中积累并最终会作为属于TCF的转录因子的转录共激活因子/ LEF家族易位至细胞核。没有Wnt,β-连环蛋白不会在

SAPK/JNK信号级联信号通路相关DAXX

该基因编码一种多功能蛋白质,位于细胞核和细胞质的多个位置。它与多种蛋白质相互作用,如凋亡抗原fas、着丝粒蛋白c和转录因子红细胞增多症病毒e26癌基因同源物1。在细胞核中,编码的蛋白质作为一种与sumoylated转录因子结合的有效转录抑制因子发挥作用。它的抑制作用可以通过将这种蛋白质固定在早幼粒细