Antpedia LOGO WIKI资讯

Science:我国科学家发现线粒体外膜转位酶复合体组装机制

线粒体是真核细胞能量代谢的主要场所,与动植物的生长发育密切相关,99%的线粒体蛋白由细胞核基因编码,在细胞质中合成。线粒体外膜TOM转位酶复合体负责绝大部分前体蛋白运输进入线粒体,再通过其他转位酶复合体分选至线粒体的各个部位。TOM复合体是由7个亚基组成的膜蛋白复合体,其组装过程是多步骤且高度动态的,需要线粒体外膜SAM复合物的协助。但是,SAM复合物如何协助TOM组装的分子机制尚不清楚。 为了探索TOM转位酶复合体的组装机制,作物遗传改良国家重点实验室殷平教授研究团队独辟蹊径,利用哺乳动物细胞重组表达系统重构了该组装过程,并实现精准控制,可人为地为组装按下“暂停键”。该方法使得研究者捕获了TOM组装过程中的多个中间态并获得其蛋白样品,攻克了该领域多年来无法获得稳定的TOM复合体中间态的难题。研究团队利用单颗粒冷冻电镜技术首次解析了两个重要中间态的高分辨三维结构,并结合功能分析阐明了SAM复合物协助组装以及释放TOM的分子......阅读全文

11月Science精华 我国科学家揭示非洲猪瘟病毒组装机制

  本周又有一期新的Science期刊(2019年11月1日)发布,它有哪些精彩研究呢?让小编一一道来。图片来自Science期刊。  1.我国科学家在Science期刊上解析出非洲猪瘟病毒的高分辨率三维结构并揭示它的组装机制  doi:10.1126/science.aaz1439  非洲猪瘟(A

2019年1月18日Science期刊精华

  本周又有一期新的Science期刊(2019年1月18日)发布,它有哪些精彩研究呢?让小编一一道来。  1.Science:揭示一种新的抗体疗法可阻止骨髓移植后的巨细胞病毒重新激活  doi:10.1126/science.aat0066; doi:10.1126/science.aav9867

8篇论文,Science最新研究成果概览

  1.Science:揭示哺乳动物卵母细胞中的非中心体纺锤体组装机制  doi:10.1126/science.aat9557  哺乳动物胚胎经常异常发育,从而导致流产和遗传性疾病,如唐氏综合症。胚胎发育异常的主要原因是卵子减数分裂过程中的染色体分离错误。与体细胞和雄性生殖细胞不同的是,卵子通过一

2017年10月20日Science期刊精华

  本周又有一期新的Science期刊(2017年10月20日)发布,它有哪些精彩研究呢?让小编一一道来。  1.Science:揭示天然的多反应性IgA识别微生物群机制  doi:10.1126/science.aan6619  免疫球蛋白A(IgA)是一种最为丰富的哺乳动物抗体类型。在稳态下,8

Science期刊精华,我国科学家同期发表一篇Science论文

  本周又有一期新的Science期刊(2020年1月31日)发布,它有哪些精彩研究呢?让小编一一道来。图片来自Science期刊。  1.Science:在神经元突起中,单核糖体偏好性地翻译突触mRNA  doi:10.1126/science.aay4991  RNA测序和原位杂交揭示了神经元树

2017年3月24日Science期刊精华

  本周又有一期新的Science期刊(2017年3月24日)发布,它有哪些精彩研究呢?让小编一一道来。  1.Science:三分之二的致癌突变归因于随机DNA复制错误  在一项新的研究中,来自美国约翰霍普金斯大学基梅尔癌症中心的研究人员提供证据证实随机的不可预测的DNA复制“错误”导致将近三分之

年终盘点:2016年国内不容错过的重磅生物研究

  时间总是过得很快,2016年马上就要过去了,迎接我们的将是崭新的2017年,2016年,我国有很多优秀科研机构的科学家们都做出了意义重大、影响深远的研究成果,发表在国际顶级期刊上。本文中小编盘点了2016年我国科学家发表的一些重磅级研究,以饕读者。   --结构生物学 --  1.清华大学 施一

我国科学家揭示线粒体外膜转位酶复合体组装的分子机制

  线粒体是真核细胞能量代谢的主要场所,与动植物的生长发育密切相关,99%的线粒体蛋白由细胞核基因编码,在细胞质中合成。线粒体外膜TOM转位酶复合体负责绝大部分前体蛋白运输进入线粒体,再通过其他转位酶复合体分选至线粒体的各个部位。TOM复合体是由7个亚基组成的膜蛋白复合体,其组装过程是多步骤且高度动

上海应物所等在固液界面多肽自组装研究方面取得进展

  中科院上海应用物理研究所物理生物研究室的科研人员与IBM沃森研究中心和哥伦比亚大学周如鸿教授课题组合作,在固液界面多肽自组装方面的研究取得重要进展,相关论文已于近日在线发表于学术期刊《美国科学院院刊》上(Proc. Natl. Acad. Sci. USA 110,2013)。该研究工作首次

11篇!Science最新研究成果概览

  1.Science:N-豆蔻酰化蛋白质量控制机制  doi:10.1126/science.aaw4912  人们早就知道蛋白的稳定性受其N-末端氨基酸残基的影响,并且在过去三十年中大量的研究工作已描述了一系列N-端规则(N-end rule)途径,这些途径通过N-末端的蛋白降解子基序让其所在的

3月Science期刊不得不看的亮点研究

  2020年3月份即将结束了,3月份Science期刊又有哪些亮点研究值得学习呢?小编对此进行了整理,与各位分享。  1.Science:重大进展!经过改进的CRISPR-Cas9不受PAM的限制,可靶向整个基因组中的任何位点  doi:10.1126/science.aba8853  许多基础研

一文了解2019年11月29日Science期刊精华

  本周又有一期新的Science期刊(2019年11月29日)发布,它有哪些精彩研究呢?让小编一一道来。  1.Science:利用机器引导设计方法优化AAV病毒衣壳  doi:10.1126/science.aaw2900  天然的AAV并不特异性地靶向患病的细胞和组织,它们可以被免疫系统识别,

北大生科院最新PNAS文章

  来自北京大学生命科学学院的研究人员独立完成了一项最新研究成果:Self-assembly and sorting of acentrosomal microtubules by TACC3 facilitate kinetochore capture during the mitotic s

连发4篇Sci正刊!徐彦辉揭示染色体结构及转录新机制

  以人类为代表的高等生物进化出一系列复杂的基因表达调控机制,利用同一套基因组形成多种不同表型的细胞,实现复杂的生长发育过程。发生在基因启动子区的转录起始过程是基因表达调控的核心。通过表观遗传修饰(如启动子区DNA甲基化),染色质重塑暴露启动子DNA,在启动子区装配超大分子量转录起始复合物,细胞可在

2018年8月10日Science期刊精华

  本周又有一期新的Science期刊(2018年8月10日)发布,它有哪些精彩研究呢?让小编一一道来。  图片来自Science期刊。  1.Science:重大突破!首次发现儿童肾癌和成年人肾癌的不同发育起源  doi:10.1126/science.aat1699  肾癌是英国第七大常见的癌症

饶子和团队破解结核分枝杆菌能量代谢奥秘

  饶子和院士团队科研成果发布会26日在南开大学举行。记者从会上获悉,饶子和院士团队联合国内外多家科研机构开展的一项研究,近日破解了结核分支杆菌能量代谢的奥秘,为抗击耐药结核的新药研发奠定了重要基础。  该成果论文以研究长文的形式在线发表于国际顶级学术期刊《科学》(Science)上。  当前结核病

第三届国际兽医检测诊断大会首轮演讲嘉宾

第三届国际兽医检测诊断大会首轮演讲嘉宾新鲜出炉,权威大咖齐聚杭州!为促进行业发展、提升兽医检测诊断水平和能力,由中国农业国际合作促进会、中国农业大学动物医学院、南京农业大学动物医学院及世信朗普国际展览(北京)有限公司联合主办的第三届国际兽医检测诊断大会将于2021年6月25-27日在杭州国际博览中心

年度巨献:2017年Science杂志重磅级突破性研究成果

  时光总是匆匆而逝,12月份已经开始,2017年也已接近尾声,迎接我们的将是崭新的2018年,2017年三大国际著名杂志Cell、Nature和Science(CNS)依旧刊登了很多突破性耐人寻味的研究,本文中小编首先对2017年Science杂志发表的重磅级亮点研究进行盘点,分享给大家!与各位一

施一公:克服提纯问题,发布最新酵母剪接体结构

  2018年5月25日,清华大学生命学院施一公教授研究组就剪接体的组装机理与结构研究于《科学》(Science)杂志以长文形式再次发表重大研究成果。这篇题为《完全组装的酿酒酵母剪接体激活前结构》(Structures of the Fully Assembled Saccharomyces cer

施一公再发Science 克服提纯问题 发布最新酵母剪接体结构

  2018年5月25日,清华大学生命学院施一公教授研究组就剪接体的组装机理与结构研究于《科学》(Science)杂志以长文形式再次发表重大研究成果。这篇题为《完全组装的酿酒酵母剪接体激活前结构》(Structures of the Fully Assembled Saccharomyces cer

NIBS邵峰再发PNAS文章

  来自北京生命科学研究所,中国农业大学的研究人员发表了题为“Structural mechanism of ubiquitin and NEDD8 deamidation catalyzed by bacterial effectors that induce macrophage-speci

任兵教授Cell子刊解读染色质结构域

  高等生物的细胞核负责储存基因组DNA,这些DNA环绕着由四种组蛋白组成的八聚体,形成碟状的核小体结构。基因组DNA以这样的形式包装成为染色质,使DNA受到良好的保护。 所有控制基因转录的调控蛋白,都要结合在DNA上起作用。而染色质的3D结构会随着细胞生活周期而变化,调节调控因子所能接触到的基因。

11人!2021中科院化学部新晋院士名单公布(附简介)

11月18日,2021年中国科学院院士增选当选院士名单公布,其中化学部11人。卜显和,男, 南开大学材料科学与工程学院/化学学院, 教授  学习/工作经历  1982.09-1986.07, 南开大学化学系,本科生  1986.09-1992.12, 南开大学化学系,硕士、博士生(导师:陈荣悌院士)

广州地化所提出硅柱撑粘土矿物的“非胶束模板”成孔机制

  多孔粘土异质结构材料(PCHs)是以长链烷基铵为模板剂,以粘土矿物为基体制备的一类柱撑材料。PCHs独特的孔径分布范围弥补了微孔性柱撑粘土矿物和介孔硅之间的孔径分布间隙,有希望成为良好的吸附剂、催化剂、载体或合成其他多孔材料的模板。因此,PCHs的成孔机制和有效的结构控制尤为重要。长期以来,PC

线粒体对机体健康到底有多重要?

  我们都知道,线粒体是机体的细胞能量工厂,近年来随着科学家们研究的深入,他们渐渐开始发现线粒体对机体健康非常重要,本文中,小编就对相关研究进行了整理,分享给大家!  【1】EMBO J:单一的线粒体蛋白缺失或会诱发全身性的炎症反应  doi:10.15252/embj.201796553  目前研

最新精彩研究!2019年11月8日Science期刊精华

  本周又有一期新的Science期刊(2019年11月8日)发布,它有哪些精彩研究呢?让小编一一道来。  图片来自Science期刊。  1.Science:揭示非核糖体肽合成酶三维结构,有助深入认识抗生素合成  doi:10.1126/science.aaw4388  在一项新的研究中,来自加拿

2018年9月28日Science期刊精华

  本周又有一期新的Science期刊(2018年9月28日)发布,它有哪些精彩研究呢?让小编一一道来。  1.Science:重大进展!鉴定出有害藻花产生强效神经毒素软骨藻酸的基因簇  doi:10.1126/science.aau0382; doi:10.1126/science.aau9067

清华施一公院士发表2016开年Science文章

  来自清华大学生命科学学院、中科院上海生命科学研究院的研究人员报告称,他们获得了分辨率为3.8埃的U4/U6.U5 三小核核糖核蛋白复合物(U4/U6.U5 tri-snRNP)三维结构,由此提供有关剪接体(spliceosome)组装和催化的新见解。研究结果发布在1月7日的《科学》(Scienc

组蛋白研究进展速览!

  本文中,小编盘点了多篇研究报告,共同解析科学家们在组蛋白研究上取得的新成就,与大家一起学习!图片来源:Daniel N. Weinberg et al,doi:10.1038/s41586-019-1534-3  【1】Nature:揭示组蛋白标记H3K36me2招募DNMT3A并影响基因间DN

Cell:阐明活细胞中蛋白质凝缩的新工具

  一种利用光来控制活细胞内物质的工具,已经开始为我们解释“蛋白质如何组装成不同的液体和凝胶状固态”,这对于理解许多关键的细胞运转,是至关重要的。延伸阅读:Science:新结构揭示细胞的蛋白质生产机器是如何组装的。  由于极大的复杂性,宿主细胞会同时发生成千上万的化学反应。一些反应发生在专门的隔间