揭示智障相关基因在轴突发育中功能

中科院上海生科院神经科学研究所熊志奇课题组在最新研究中,揭示了位于X染色体上的Opitz综合征相关蛋白Mid1在神经元轴突发育中的功能,为了解Opitz综合征的发病机理提供了线索。相关成果日前在线发表于美国《国家科学院院刊》。 在遗传因素引起的智力障碍中,相当一部分是由X染色体上的基因突变或缺失引起的。研究这些基因在神经系统中的功能,有助于了解智力障碍的产生原因,对于诊断、预防这类疾病以及开发有针对性的治疗手段都具有重要意义。 Mid1 是一个与人类Opitz综合征相关的X连锁基因,但科学家对其在神经系统中的功能知之甚少。此次研究人员发现,Mid1参与调控了哺乳动物皮层神经元的轴突发育过程。在神经元中急性敲减Mid1的水平能促进轴突的生长与分枝,并导致小鼠胼胝体轴突在对侧皮层的正常投射模式被打乱。在Mid1基因敲除小鼠中,也发现了类似的异常。进一步的研究发现,Mid1是通过泛素化降解磷酸酶2A的催化亚基(PP......阅读全文

揭示智障相关基因在轴突发育中功能

  中科院上海生科院神经科学研究所熊志奇课题组在最新研究中,揭示了位于X染色体上的Opitz综合征相关蛋白Mid1在神经元轴突发育中的功能,为了解Opitz综合征的发病机理提供了线索。相关成果日前在线发表于美国《国家科学院院刊》。   在遗传因素引起的智力障碍中,相当一部分是由X染色体上的基因突变

为轴突“披上”外衣

  髓磷脂是包围在神经元轴突周围的一种重要的膜结构,起到绝缘和供给轴突神经营养支持的作用。髓鞘的破坏会引发产生脱髓鞘疾病,后者可发生于中枢神经系统和外周神经系统。Neuroscience Bulletin最新(2013年4月1日)一期 “髓磷脂和脱髓鞘疾病”专辑集合了来自国内外11个实验室的

智障相关基因在轴突发育中功能被揭示

  中科院上海生科院神经科学研究所熊志奇课题组在最新研究中,揭示了位于X染色体上的Opitz综合征相关蛋白Mid1在神经元轴突发育中的功能,为了解Opitz综合征的发病机理提供了线索。相关成果日前在线发表于美国《国家科学院院刊》。   在遗传因素引起的智力障碍中,相当一部分是由X染色体上的基因突变

轴突运输的概念

轴突运输(axonal transport)在神经元细胞中, 轴突末端到细胞体的距离很长, 并且轴突末梢要释放大量的神经递质, 所以神经元必须不断供给大量的物质, 包括蛋白质、膜, 以补充因轴突部位的胞吐而丧失的成分。由于核糖体只存在于神经细胞的细胞体和树突中, 在轴突和轴突末梢没有蛋白质的合成,

研究揭示轴突富集长非编码RNA调控轴突生长的分子机制

  近期,Cell Reports在线发表了中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)研究员鲍岚课题组的最新研究进展——Axon-enriched lincRNA ALAE is required for axon elongation via regulation of lo

上海生科院揭示轴突富集的miRNA调控轴突发育的分子机制

  国际学术期刊Cell Reports 于12月17日在线发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所鲍岚研究组的最新研究进展:FMRP-Mediated Axonal Delivery of miR-181d Regulates Axon Elongation by Locall

逆向轴突运输的概念

中文名称逆向轴突运输英文名称retrograde axonal transport定  义神经细胞轴突中小泡或物质由末梢沿微管向细胞本体的运输方式。应用学科细胞生物学(一级学科),细胞生理(二级学科)

Cell解密神秘的轴突导向调控

  神经网络的形成是一个非常复杂的过程,其中关于远距离中神经元的轴突是如何一步步被引导到正确的方向,并最终达到靶细胞,就是一个很有趣并值得探讨的问题。   近期一项研究发现了在大脑发育中引导精密神经轴突回路形成的关键机制,这将为解析这一神秘调控过程,以及相关的脑部疾病提供新的研究思路。来自哈佛医学

神经所揭示智力障碍相关基因Mid1在轴突发育中的功能

  11月5日,《美国科学院院报》(PNAS)在线发表了中科院上海生科院神经科学研究所熊志奇组的最新研究论文《X-连锁的微管相关蛋白Mid1调控轴突的发育》。这项工作揭示了位于X染色体上的Opitiz综合征相关蛋白Mid1在神经元轴突发育中的功能,为了解Opitz综合征的发病机理提供了线索。   

细胞生物学术语轴突运输

在神经元细胞中, 轴突末端到细胞体的距离很长, 并且轴突末梢要释放大量的神经递质, 所以神经元必须不断供给大量的物质, 包括蛋白质、膜, 以补充因轴突部位的胞吐而丧失的成分。由于核糖体只存在于神经细胞的细胞体和树突中, 在轴突和轴突末梢没有蛋白质的合成, 所以蛋白质和膜必须在细胞体中合成, 然后运输

神经元根据轴突的长短分类介绍

  根据轴突的长短,神经元可分为:  ①长轴突的大神经元,称GolgiⅠ型神经元,最长的轴突达1m以上;  ②短轴突的小神经元,称GolgiⅡ型神经元,轴突短的仅数微米。

细胞生物学术语逆向轴突运输

中文名称逆向轴突运输英文名称retrograde axonal transport定  义神经细胞轴突中小泡或物质由末梢沿微管向细胞本体的运输方式。应用学科细胞生物学(一级学科),细胞生理(二级学科)

神经所发现胼胝体轴突拓扑结构的形成机制

  6月28日,《美国科学院院报》(PNAS)在线发表了中科院上海生命科学研究院神经科学研究所蒲慕明研究组的最新研究论文《轴突在胼胝体中的位置决定其对侧投射》。该研究工作主要由博士研究生周静等在蒲慕明研究员的指导下完成。   哺乳动物脑内最大的纤维束是胼胝体,它连接大脑两个半球之间相对应的区域。然

关于轴突型常染色体隐性遗传的CMT的介绍

  轴突型常染色体隐性遗传的CMT主要特征是发病年龄相对较早,常在青春期起病,神经传导速度正常或轻度减慢,神经病理学显示为轴突变性。已发现两个基因位点1q21.2-21.3、19q13.3与之有关,分别命名为CMT2B1、CMT2B2[19,21], 核纤层蛋白A/C基因(LMNA)的突变可导致CM

Nature:三管齐下!可实现脊髓损伤中的轴突再生

  当人们遭受脊髓损伤时,这会损害轴突并阻止大脑向损伤部位下方的神经元发送信号,从而导致瘫痪和其他神经功能(如膀胱控制和手部力量)的丧失。轴突是连接我们的神经元并使得它们能够通信的微小神经纤维。  在一项新的研究中,来自美国加州大学洛杉矶分校、哈佛大学和瑞士联邦理工学院的研究人员开发出一种三管齐下的

上海生科院发现诱导自噬促进脊髓损伤后轴突再生

  9月16日,《美国科学院院报》(PNAS)在线发表了中国科学院上海生命科学研究院神经科学研究所、神经科学国家重点实验室以及中国科学院脑科学与智能技术卓越创新中心罗振革研究组题为《诱导自噬促进微管稳定和脊髓损伤后轴突再生》的研究论文。  中枢神经元有限的内在再生能力,环境中多种再生抑制因子的存在以

PLoS-ONE:科学家找到计算轴突降解的新方法

  在哺乳动物神经系统发育过程中轴突会自然降解,但是在成年人神经退行性疾病中,相同的基因编码的细胞器调节异常则会破坏关键的结构。  图片来源:PLOS ONE  背根神经节(DRG)释放轴突神经生长因子(Nerve growth factor,NGF)是一个成熟的体外研究发育退化的生化和细胞生物学研

表观遗传学修饰对轴突再生调控作用的研究进展

  轴突是神经冲动传递过程中结构与功能的基本单位。无论在中枢抑或是周围神经系统损伤后,诱导有效的轴突再生过程是改善神经功能的基础。现已证实,脊髓损伤后轴突能否再生不仅取决于其固有的生长能力,还取决于轴突所处的环境。神经系统损伤后,神经细胞对轴突再生相关基因的表达动员能力及细胞骨架原料的形成能力是决定

胶质细胞调控神经轴突再生机制研究有了新成果

  2023年4月6日23点,Developmental Cell 期刊在线发表题为《胶质细胞传递和腺苷信号通路促进神经损伤再生》的研究论文。该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)李毅研究组与美国麻省大学医学院的相杨团队合作完成。该研究以果蝇幼虫和小鼠作为研究的模型动物,发

α微管蛋白乙酰化修饰调控神经元轴突分支的分子机制

  近日,中国科学院上海生命科学研究院生物化学与细胞生物学研究所鲍岚研究组的最新研究成果,以α-Tubulin Acetylation Restricts Axon Overbranching by Dampening Microtubule Plus-End Dynamics in Neurons

α微管蛋白乙酰化修饰调控神经元轴突分支的分子机制

  近日,中国科学院上海生命科学研究院生物化学与细胞生物学研究所鲍岚研究组的最新研究成果,以α-Tubulin Acetylation Restricts Axon Overbranching by Dampening Microtubule Plus-End Dynamics in Neurons

宋源泉等发现Piezo离子通道抑制神经轴突再生的功能

  由于绝大多数成熟神经元并不具备再生能力,神经系统损伤尤其是中枢神经系统的损伤,常常导致难以恢复的严重后果。例如,当人脊髓因外伤受到损伤时,由于脊髓神经元无法再生,其功能无法得以修复,将导致脊髓损伤以下的身体部位瘫痪。最近一百多年,科学家们已经对神经系统损伤修复的机制进行了大量的研究和探索。普遍观

上海生科院揭示自噬调控神经元轴突发育新机制

  8月19日,国际细胞自噬领域的核心期刊《自噬》在线发表了题为《Mir505-3p通过调控Atg12及自噬通路以影响神经元轴突发育》的研究论文。该研究由东华大学化工生物学院周宇荀团队与中国科学院上海生命科学院神经科学研究所、脑科学与智能技术卓越创新中心仇子龙研究组合作完成。该研究利用CRISPR/

Cell子刊:细胞再生的关键基因

  来自宾夕法尼亚州立大学和杜克大学的科学家们确定了与损伤神经细胞再生相关的一个基因。由宾夕法尼亚州立大学生物化学和分子生物学助理教授Melissa Rolls领导的这一研究小组发现一个单基因的突变可以完全关闭轴突切断或损伤后自我再生的过程。轴突是神经细胞负责向其他细胞传送信号的部分。“我们希望

Cell子刊:细胞再生的关键基因

  来自宾夕法尼亚州立大学和杜克大学的科学家们确定了与损伤神经细胞再生相关的一个基因。由宾夕法尼亚州立大学生物化学和分子生物学助理教授Melissa Rolls领导的这一研究小组发现一个单基因的突变可以完全关闭轴突切断或损伤后自我再生的过程。轴突是神经细胞负责向其他细胞传送信号的部分。“我们希望

Cell-Metabolism:-补充能量有助于神经元修复

  当脊髓受伤时,受损的神经纤维通常无法再生长,最终导致永久性功能丧失。此前已经有大量研究试图寻找促进损伤后轴突再生的方法。最近,在小鼠中进行的一项发表在《Cell Metabolism》杂志上的研究结果表明,这些受伤的脊髓神经内能量供应的增加可以帮助促进轴突再生并恢复某些运动功能。  文章作者,美

上海生科院在轴突发育细胞膜转运机制研究上获进展

  1月29日,《神经科学杂志》(the Journal of Neuroscience)发表了中国科学院上海生命科学研究院神经科学研究所和神经科学国家重点实验室关于神经元轴突发育过程中细胞膜转运机制的研究成果,论文题目为JIP1 mediates anterograde transport

微流控系统对神经元轴突生长和再生研究的意义

  条块分割的神经元培养平台轴突分离示意图   成年哺乳动物中枢神经系统受损会导致持久性神经功能缺失并且其功能的恢复很有限。在过去的10年里,科学家们不断加大科研力度进行神经再生研究并以实现功能恢复为终极目标。许多研究都集中在防止进一步神经损伤或病理损伤后功能连接的修复。相比于周围神经系统,成人中

科学家解码生物界最快的细胞运动之一

  Raphidocystis contractilis是螺旋藻类的一种真核生物,在淡水、咸水和海水中发现。这些生物体被称为"太阳虫",因为它们有辐射状的指状臂,或称轴突,使它们具有太阳般的外观。R. contractilis的轴突是由α-β管蛋白异构体组成的,它形成微管。尽管它有能力快速缩回手臂以

《Cell-Reports》再生脊髓损伤神经细胞

  4月10日,耶鲁大学课题组《Cell Reports》发文,关闭Rab27基因可以启动脊髓损伤后神经细胞轴突再生。  文章通讯作者、耶鲁大学神经学教授Vincent Coates 说:“关于神经细胞再生,人类认知还非常局限。”  研究小组发现,超过580种不同基因都可能对神经细胞轴突再生有作用。