Antpedia LOGO WIKI资讯

斑马鱼神经元助力人类出生缺陷研究

报道:斑马鱼(zebrafish),是一种类似于鲦鱼(minnow)的热带淡水鱼,原产于喜马拉雅地区东南部,是研究人类疾病(包括脑部疾病) 的一种公认的重要工具。利用斑马鱼,科学家们可以确定单个神经元如何发育、成熟和支持基本的功能,如呼吸、吞咽和咀嚼运动。目前,密苏里大学医学院的研究 人员指出,了解斑马鱼的神经元发育和成熟,可以使我们对出生缺陷(例如人类脊柱裂spina bifida)有一个更好的了解。 密苏里大学Bond Life Sciences Center研究员、生物科学教授Anand Chandrasekhar称:“我们正在研究神经元如何移动到它们的最终目的地。这在神经系统中尤其重要,因为这些神经元会产生类似于你在电脑中看到的 电路。如果这些电路不能正确地形成,以及如果不同类型的神经元最后到达不了正确的位置,那么动物的行为和生存将会受到损害。” 科学家们研究了斑马鱼的胚胎,它几乎是透明的......阅读全文

从斑马鱼身上竟然获得治疗帕金森的方法

   与哺乳动物相比,成年斑马鱼会使大脑中的神经元再生,但这种能力的程度和变异性尚不清楚。来自Edinburgh大学脑神经科学研究中心的Thomas Becker及其研究团队探寻了各种多巴胺能神经元群体的丧失是否足以触发神经元的功能性再生。 他们的研究结果为未来治疗具有运动异常、震颤等症状的神经系统

双酚A及其替代品双酚S同样“有毒”

  双酚A,称为BPA,在世界各地大量生产用于消费性产品,包括家用塑料制品。制造塑料容器剩余的双酚A都大概渗入到所盛的液体中,然后进入人体。为回应消费者对于安全性的担忧,许多厂家用一种称为双酚S(BPS)的化学物质来代替双酚A,通常被标记为“不含双酚A”,并被认为是安全的。  2015年1月12日在

北京大学期刊文章发表帕金森氏病新成果

  来自北京大学、加州大学洛杉矶分校的研究人员在斑马鱼模型中证实,th2 (tyrosine hydroxylase 2 )基因是色氨酸羟化酶的编码基因,在5-羟色胺合成中起至关重要的作用,可作为5-羟色胺能神经元(serotonergic neuron)的一个标记物。这些研究成果发表在6月

多光子显微镜中的焦点深度扩展方法(一)

双光子激光扫描显微镜结合钙指示剂是活体神经元信号探测的金标准。神经网络中的神经元分布在三维空间中,监测它们的活动动态需要一种能够快速提高体积成像速率的方式。但是,使用光栅扫描多光子显微镜对大量图像进行成像,如果采用高数值孔径(NA)的物镜来获得较高的横向分辨率时,会导致较小的聚焦深度,为了获得小聚焦

11月9日《科学》杂志内容精选

    气候变迁与古代玛雅人  对位于伯里兹南部一个洞穴中有2000年历史的石笋进行的一项新研究显示,气候变化对古典玛雅文明的成长和解体有着长期的影响。玛雅人所占据的是现在的中美洲,他们留下了镌刻在石碑上的详细历史记录,记录了他们丰富的文化、复杂的政治体制及先进的技术。研究

近红外电压纳米探针助力神经元电信号在体成像

  群体神经元活动的在体检测是揭示神经系统功能机制的关键。研发高灵敏的并可用近红外光激发的电压敏感探针,已成为当前国际神经科学领域重点攻克的技术难关之一。中国科学院脑科学与智能技术卓越创新中心/神经科学研究所杜久林研究团队与中国科学院上海硅酸盐研究所施剑林、步文博研究团队合作研发了一种可用近红外光激

发育生物学领域最新研究进展

  本期为大家带来的是发育生物学领域的最新研究进展,希望读者朋友们能够喜欢。  1. Eur Respir J:新研究揭示肺脏发育高清图谱  DOI: 10.1183/13993003.00746-2019  过早出生的婴儿常常患有肺部发育不良,并可能面临危及生命的后果。为了给这些婴儿提供新颖的治疗

Cell:新研究揭示胚胎时期神经回路是如何发育的

  神经元细胞的发育成熟最初需要从胚胎开始,直至到达神经系统。然而,我们目前并不清楚其中的详细过程。霍华德·休斯医学研究所的科学家Yinan Wan说:“我们目前猜测的很多过程是无法被观测的”。如今,Wan和她的同事们已经开发出了可以直接观察动物活动的工具。(图片来源:Wan et al, Cell

2020年我国将绘成斑马鱼全脑介观图谱

“到2020年完成有20万个神经元的斑马鱼全脑介观图谱的绘制。”5月2日,香山科学会议召开“全脑介观神经联接图谱”国际合作计划特别会议,中国科学院外籍院士、中国科学院神经科学研究所所长蒲慕明介绍,中国科学家将从模式动物斑马鱼入手从全脑尺度上解读脑工作原理,利用期间形成的脑科学研究技术,进一步于

Glia:神经干细胞再生的机制

  “与哺乳动物不同,斑马鱼拥有超强的神经元再生功能,因此在大脑受到损伤后能够快速激发脑组织再生过程。然而,它们的基因与人以及小鼠却无太大差异”。该研究的作者,来自Waseda大学分子神经学系的教授Toshio Ohshima说道:“此前有研究表明斑马鱼的神经元再生功能能够应用于小鼠,因此或许人类也

上海生科院973计划最新Cell子刊文章

  来自中科院上海生科院神经所的研究人员采用活体共聚焦和双光子成像等多种技术,发现了静息态小胶质细胞与神经元之间的双向功能调节,这首次证明了神经元电活动可以调控静息态小胶质细胞的运动,并揭示了小胶质细胞对神经元活动的稳态调节,为神经-免疫交叉领域提供了新的研究思路。相关成果公布在 Develop

谁控制着你的口腹之欲

  肥胖是现代工业社会的一种流行病,随着人们饮食习惯和生活方式的改变,全球的肥胖发病率正在逐年攀升,已经成为了世界性的健康问题。  大脑深处的下丘脑中聚集着上万个POMC神经元,它们是饱足感和饥饿感的控制中心,能根据机体信号对食欲和进食行为进行调节。科学家们一直希望能够通过操纵这些神经元来解决肥胖问

斑马鱼如何长出新的神经元

  研究人员已经发现了使得斑马鱼的大脑能够在其受到创伤性损害之后再生的机制。与哺乳动物不同,这些在淡水中生长的小鲦鱼因为脑部损伤所致的炎症会伴有新神经元的产生。   如今,Nikos Kyritsis及其同事展示,在损伤反应中,斑马鱼脑部的炎症会激活特定的信号传导分子及神经胶质细胞,后者可促进

美制造出迄今最大规模人造脑含5300亿个神经元

  用世界上运算速度最快的96台计算机,研究人员制造出了包含5300亿个神经元和100万亿个突触的人造“大脑”。这是迄今为止对大脑的最大规模的模拟。   2012年11月14日,在美国犹他州盐湖城的2012超级计算大会上,IBM的计算机专家提交了一份标题是“1014”的报告。报告所描述的研究被媒体

Nature:发现运动神经元新作用

  一项2016年1月13日发表于《Nature》期刊的新研究可能改变对运动神经元作用的看法。运动神经元是从脊髓延伸到肌肉和其他器官的神经细胞,一直被认为是中间神经元回路信号的被动接受者。然而现在,来自卡罗林斯卡学院(Karolinska Institutet)的研究人员们表明,运动神经元会通过一种

上海生科院实现清醒小动物大脑多巴胺调质释放的实时检测

  11月18日的《神经科学杂志》报道了中国科学院上海生命科学研究院神经科学研究所的最新科研成果。该成果揭示在小巧透明的幼年斑马鱼上,奖赏性嗅觉刺激诱发脑中多巴胺的释放,所释放的多巴胺可以用电化学方法实时记录并能追溯其上游的神经环路。这是首次在清醒的小动物脑中记录到感觉刺激引起的多巴胺释放。对其上游

神经元活动如何产生行为?答案在极个别的神经元中

  我们大脑中的神经元活动如何引发行为上改变?从细胞层面到行为学层面存在巨大的鸿沟。这长久以来都是神经科学的难题。近日,来自马克斯普朗克神经生物学研究所的科学家们开发了一种方法,可以让他们识别出那些参与特定运动指令的神经细胞。科学家首次通过人为地激活少数神经元来诱发鱼的行为。了解神经环路的核心成分是

认识睡眠神经元

  《自然—通讯》3月6日发表的一篇论文报告了睡眠对活斑马鱼体内个体神经元的影响。研究发现,睡眠会增加染色体的运动(染色体动力学),从而改变染色体结构并减少DNA损伤。结果显示,染色体动力学可能是定义个体睡眠神经元的潜在标志物。  长期剥夺睡眠可以致命,睡眠障碍也与各种大脑功能缺陷有关。虽然研究人员

嗅觉神经元起源颠覆旧时理论

  当我们闻到玫瑰的芳香或是健身房的汗味时,负责感知这些信息的是两类感觉神经元。科学家们对这些感觉神经元特别感兴趣,因为神经元中只有它们能在成年阶段再生。一旦这些嗅觉神经元死亡,马上就会有新生神经元来替代,不过发育生物学家们并不清楚这些神经元从何而来。   有些胚胎细胞会发育成为皮肤或中枢神经系统

全国首届共聚焦显微图像大赛颁奖典礼在京举行

一等奖:斑马鱼脑部的神经元与血管 二等奖:凤舞九天 三等奖:纳米——中国风   1月20日,以“创新、创意、创造”为主题的奥林巴斯杯全国首届共聚焦显微图像大赛在北京落下了帷幕。经过为期两个多月的激烈角逐,《斑马鱼脑部的神经元与血管》、《盛放的肿瘤》、《凤舞九天》、《纳米——中国风》

Cell发布重大项目成果:特殊大脑状态的神经元基础

  美国国家卫生研究院拨款1亿6900万美元实施了名为“BRAIN Initiative(应用先进革新神经技术推进大脑研究倡议,简称BRAIN计划)”的项目,今年这一项目加大了力度,重点开发了解神经回路功能、捕捉大脑动态活动的新工具和新技术。  来自哥伦比亚大学,NIH国家心理健康研究所(NIMH)

神经所研究揭示小胶质细胞生理功能

  11月29日,Developmental Cell在线发表了中科院上海生科院神经所杜久林研究组题为《静息态小胶质细胞与神经元之间的双向功能调节》的研究论文。该工作由博士生李莹和杜旭飞在杜久林研究员的指导下共同完成。  小胶质细胞是中枢神经系统中重要的免疫效应细胞。在病理状态下,小

Nature重磅:华人学者让先天眼盲小鼠首次看见光明

  今天,《自然》杂志上刊登了一项华人学者的重磅研究。来自西奈山伊坎医学院的Bo Chen教授团队使用再生疗法,让罹患先天性眼盲的小鼠首次见到了光明!  据估计,在全世界范围内,有超过5000万名患者受到了眼盲症的困扰,其中的主要原因之一,便是视网膜神经元的退化。在斑马鱼中,不少研究人员们看到了使用

华人学者让先天眼盲小鼠首次看见光明!

今天,《自然》杂志上刊登了一项华人学者的重磅研究。来自西奈山伊坎医学院的Bo Chen教授团队使用再生疗法,让罹患先天性眼盲的小鼠首次见到了光明!▲本文通讯作者Bo Chen教授(图片来源:西奈山伊坎医学院)  据估计,在全世界范围内,有超过5000万名患者受到了眼盲症的困扰,其中的主要原因之一,便

神经所杜久林研究组发现脑血管完整性的神经调节机制

  4月21日,《细胞研究》期刊在线发表了中科院神经科学研究所、中科院脑科学与智能技术卓越创新中心、神经科学国家重点实验室杜久林研究组题为《神经元通过释放含有miR-132的外泌体调节脑部血管完整性》的研究论文。该研究发现,神经元通过释放外泌体向脑血管内皮细胞中运输神经元高表达的miR-132,进而

眼病的再生疗法 光感受器是视网膜中的特殊神经细胞

美国研究人员14日在《自然》杂志线上版发表论文称,他们首次将哺乳动物视网膜中的Müller胶质细胞转变为杆状光感受器,成功逆转了小鼠的先天性失明。他们称,这一研究成果将推动年龄相关黄斑变性等眼病的再生疗法研究。 光感受器是视网膜中的一类特殊神经细胞,受到光刺激时会向大脑发出信号。在包括小鼠

Nature Methods发布突破性成像技术

  苏黎世联邦理工学院的研究人员开发了一种新显微成像技术,首次实现了在活体三维组织中选择性成像单个细胞。这一成果发表在五月十八日的Nature Methods杂志上。  研究人员用这一技术在斑马鱼幼鱼的神经系统中获得了惊人的微观图像。他们不仅展示了脊髓中的运动神经元,还以另一种颜色突出了其中一个神经

Nature:华人学者担纲“神经元百科全书”项目

  三月三十一日Allen脑科学研究所宣布启动一个雄心勃勃的计划,BigNeuro。该计划旨在建立世界上最大型的神经结构公共目录,帮助研究者们更好的模拟和理解人类大脑。领导这一项目的是著名华人学者彭汉川(Hanchuan Peng)博士。  超大规模大脑研究的时代已经来临,欧盟启动人脑工程计划(Hu

新技术可创建蠕虫大脑神经系统毫秒级3D影像系统

  麻省理工学院和维也纳大学的研究人员创建出一种揭示活体动物整个大脑神经活动的成像系统,并生成毫秒级的3D影像,可以帮助科学家了解神经元网络如何处理感觉信息并产生行为。该研究成果刊登在近日的《自然-方法》上。  研究人员使用这种技术成像秀丽隐杆线虫每个神经元的活性,因此,它是唯一一个已知整个神经接线

一个抑癌基因可抑制斑马鱼再生

  总有一天,再生医学会让医生能够矫正先天性畸形,再生受损的手指,甚至修补一颗受损的心脏。但是要做到这一点,他们将必须对付身体的抗癌安全系统。现在,来自加州大学旧金山分校(UCSF)的研究人员,发现了一个人类基因,可能是这种权衡的一个关键介质,阻断肿瘤和健康的再生。延伸阅读:斑马鱼神经元助力人类出生