免疫代谢(immunometabolism)涉及糖酵解、三羧酸循环、磷酸戊糖途径和氨基酸代谢等细胞内代谢通路网络,在调节免疫细胞反应中起着至关重要的作用。特别是,氨基酸,如色氨酸(Trp)、精氨酸、谷氨酰胺和亮氨酸的代谢可以影响肿瘤的进展和免疫细胞的增殖和分化。因此,通过调控与这些氨基酸代谢相关的酶,科学家们一直在尝试开发免疫代谢癌症疗法。不过,靶向这类酶的传统小分子抑制剂因为耐药性的存在,通常无法产生持久的响应,此外,一些不可成药的酶无法被传统的小分子抑制剂靶向,因此,急切需要探索干预氨基酸代谢的替代方法。
PROTAC全称为Proteolysis-Targeting Chimeras,即蛋白水解靶向嵌合体,是一种不同传统小分子抑制剂的新药物类型,由3部分组成:靶蛋白binder、linker以及E3泛素连接酶binder,通过泛素-蛋白酶体系统介导靶蛋白的降解,提供了另一种调节蛋白稳态的方法。具体来说,PROTAC分子的一端与靶蛋白结合,另一端与E3泛素连接酶结合。而E3泛素连接酶可通过将一种叫做泛素的小蛋白贴在靶蛋白上将其标记为缺陷或受损蛋白。之后,细胞的蛋白粉碎机(即,蛋白酶体)会识别和降解被标记的靶蛋白。基于这种作用机制,基于PROTAC技术研发的药物也被称为蛋白降解剂。
PROTAC技术最大的优势之一是能够使靶点从“无成药性”变成“有成药性”。传统的小分子抑制剂需要与目标蛋白有很强的结合,通常是与活性位点结合,然而,据估计,人类细胞中80%的蛋白缺乏这样的位点。由于PROTAC只需要与目标蛋白弱结合就可以特异性地“标记”它,因此,目前蛋白质组中~80%不可成药的蛋白可能都能够用PROTAC技术来解决。
克服传统小分子抑制剂的耐药性是PROTAC技术的另一潜在优势。以AR靶点为例,大多数接受AR抑制剂恩扎卢胺治疗的患者会因为癌细胞产生AR突变等情况产生耐药性。而靶向AR的PROTAC可能能够催化多种突变蛋白的降解,从而在一定程度上克服或减少耐药性的产生。
到目前为止,PROTAC已被用于靶向多种蛋白,被研究较多的靶点包括AR、BTK、BRD2-4、CDK4/6等。然而,用PROTAC来靶向免疫代谢相关蛋白的研究并不多。
来源:Nature Communications
5月18日,最新发表在Nature Communications杂志上的一项研究中,来自新加坡南洋理工大学的一个科学家团队开发了一款可智能激活的靶向吲哚胺2,3-双加氧酶(Indoleamine 2,3-dioxygenase, IDO)的新型PROTAC——半导体聚合物纳米PROTAC(semiconducting polymer nano-PROTAC, SPNpro)。研究证实,SPNpro巧妙结合了光学疗法抗癌和蛋白降解抗癌两重力量, 高效抑制了小鼠肿瘤生长和转移。同时,该研究通过在肿瘤中特异性激活PROTAC克服了当前PROTAC分子潜在的脱靶副作用。
SPNpro的结构(来源:Nature Communications)
SPNpro由一个半导体聚合物核(semiconducting polymer core)通过一个癌症生物标志物可切割肽(cancer-biomarker-cleavable peptide)偶联PROTAC片段组成。
半导体聚合物纳米颗粒(Semiconducting polymer nanoparticles, SPNs)具有良好的生物相容性和可调的光学特性,因此被科学家们用于光学疗法的开发。
吲哚胺2,3-双加氧酶(IDO)被选作PROTAC的靶蛋白是因为,该酶是一种在肿瘤组织中过表达的色氨酸分解酶,可将色氨酸转化为犬尿氨酸(Kyn),导致树突状细胞(DC)功能障碍和效应T细胞的功能抑制。靶向IDO的PROTAC肽(IDO-targeting PROTAC peptide, IPP)由被广泛使用的IDO抑制剂NLG919与E3泛素连接酶VHL 结合肽连接而成。
组织蛋白酶B (Cathepsin B, CatB)被选为癌症生物标志物,它通常在多种癌症细胞中过表达,如乳腺癌、结直肠癌、黑色素瘤和前列腺癌。
SPNpro介导IDO降解的示意图 | SPNpro通过两个过程介导激活的光免疫代谢疗法(activatable photo-immunometabolic therapy):(i)通过近红外光照射,产生一系列癌症免疫反应,如免疫原性细胞死亡(ICD)、肿瘤相关抗原释放、DC成熟和效应T (Teff)细胞激活;(ii)SPNpro介导了免疫代谢干预过程,包括CatB特异性激活IPP、IDO和VHL靶向、蛋白酶体募集、IDO降解、色氨酸上调和Kyn消耗以及Teff细胞激活。(来源:Nature Communications)
SPNpro发挥作用的具体机制如下:一方面,系统性给药后,SPNpro可在被动地在活鼠肿瘤中积累,在近红外光照射下产生单线态氧,以消除肿瘤细胞,诱导肿瘤相关抗原的释放和免疫原性细胞死亡(immunogenic cell death, ICD)。这些释放的肿瘤相关抗原进一步诱导DC成熟,促进T细胞活化,进而增强抗肿瘤T细胞免疫应答。
在体内,SPNpro介导了可激活的光免疫代谢疗法(activatable photo-immunometabolic therap)(来源:Nature Communications)
同时,SPNpro的PROTAC功能可被癌症生物标志物CatB特异性激活。在活鼠中,肿瘤表达的CatB可原位裂解SPNpro并释放靶向IDO的PROTAC肽(IPP)。激活的IPP与免疫抑制性IDO结合,进而诱导其降解。IDO降解可缓解色氨酸过度消耗和犬尿氨酸(Kyn)积累,从而逆转免疫抑制,促进效应T细胞的激活。
最终,SPNpro介导的原位免疫代谢干预协同免疫原性光学疗法有效增强了抗肿瘤T细胞免疫反应,抑制了肿瘤生长和转移。
总结来说,该研究为对抗癌症提供了一种新的联合治疗模式。同时,通过SPNpro这种设计,科学家们在解决传统PROTAC持续起作用(always-on bioactivity)和脱靶副作用方面取得了新的进展。此外,这类PROTAC设计也可以用于其它免疫代谢相关的靶蛋白,如谷氨酰胺酶、精氨酸酶、脂肪酸合成酶、乳酸脱氢酶和乙酰辅酶A乙酰转移酶,为PROTAC在癌症治疗方面的发展提供了新的机遇。
美国加州大学旧金山分校科学家发现,大脑衰老背后隐藏着一种名为FTL1的关键蛋白。实验显示,过量FTL1蛋白会导致小鼠记忆力衰退、大脑神经连接减弱以及细胞反应迟钝。一旦阻断这种蛋白,老年小鼠就能恢复年轻......
细胞膜蛋白作为药物研发的核心靶点,其重要性已被大量临床药物证实。细胞膜蛋白靶向降解技术能选择性清除致病蛋白,展现出更强治疗潜力,开辟了药物研发的新范式。近日,由中国科学院深圳先进技术研究院医药所研究员......
中国科学院上海药物研究所研究员罗成、周兵、陈奕和华东师范大学研究员陈示洁合作,提出“强支点占据-杠杆干扰”(FOLP)的蛋白-蛋白相互作用(PPI)先导化合物设计策略,为PPI领域研究提供新的概念和方......
水稻作为最重要的粮食作物,为超过半数的世界人口提供主食。然而,水稻黑条矮缩病毒(SRBSDV)等病毒严重危害水稻生长,威胁粮食生产安全,解析病毒—水稻互作的分子机制对水稻病毒病的防控具有重要意义。近日......
记者从安徽农业大学获悉,该校王晓波教授团队联合中国农业科学院作物科学研究所邱丽娟、李英慧研究员团队,解析了关键基因对大豆种子油脂和蛋白比例(油蛋比)的调控机制,为高油或高蛋白大豆品种选育提供了新方向。......
中国科学院院士施一公团队解析了BAX线状/环状聚合物所共享的基本重复单元结构,解答了“死神”BAX究竟是如何让细胞走上死亡命运的不归路。6月27日,相关研究成果发表在《科学》。BAX多边形结构。课题组......
澳大利亚沃尔特和伊丽莎霍尔医学研究所团队在对抗帕金森病的斗争中取得重大突破:他们成功解开了一个长达数十年的谜团,确定了人类PINK1蛋白与线粒体结合的具体结构,为开发治疗帕金森病的新药开辟了新道路。这......
暨南大学生命科学技术学院教授邹奕团队在广东省重点研发项目、广东省自然科学基金等项目的资助下,研究发现转甲状腺激素蛋白或成术后认知功能障碍诊断新标志物,有望助力早期干预。近日,相关成果发表于《分子精神病......
过去几年里,单细胞蛋白质组学技术取得了长足发展,单细胞蛋白质组学逐渐走向成熟,后续有望广泛应用于肿瘤异质性分析、免疫学研究、发育生物学、神经科学以及精准医学等领域。然而,从技术发展成熟到实际场景应用分......
记者20日从西湖大学获悉,该校未来产业研究中心、生命科学学院、西湖实验室卢培龙课题组首次实现跨膜荧光激活蛋白的从头设计,这也是首个通过人工设计得到的、能够精确结合特定小分子的跨膜蛋白。相关研究成果当天......