一、蛋白质的二级结构
蛋白质在细胞中必须通过详细的三维结构识别成千上万种的不同分子,这就需要蛋白质分子具有结构多样性。蛋白质结构研究得出的第一个重要的基本规律是水溶性球状蛋白质分子折叠的重要驱动力,它是将疏水侧链置于分子内部,产生一个"疏水内核"和一个亲水表面。为了把侧链放到分子内部去,相应的高度极化亲水的主链也必须折叠到内部去,主链上的极性基团必须由疏水环境下的氢键所中和。这个问题通过在蛋白质分子内部形成规律的二级结构得到了妥善解决。这些二级结构通常是α-螺旋或β-折叠。此两种类型的二级结构的特征是主链的NH基团和C=O基团互相形成氢键,导致一些连续的残基具有相同的φ和ψ角。
1、α-螺旋
α -螺旋是蛋白质分子的主要结构成分之一,是由一段连续的肽链片段形成的。标准α-螺旋为每圈3.6个残基,第n个残基的C=O和第n+4个残基的NH之间形成氢键。除最后一个C=O基团和第一个NH基团外,α-螺旋的其余所有NH和C=O基团均形成了氢键。α-螺旋的末端是极性的,并总是位于蛋白质中的长度变化很大,可以从4个残基到40个残基不等。在蛋白质结构中观察到的α-螺旋几乎都是右手螺旋。短的(3-5个残基)的左手螺旋偶尔也可以发生。
α -螺旋中的氢键均指向相同的方向,所以肽单位沿螺旋轴处于相同的取向。由于肽单位有来自于不同的NH和C=O基团的极性偶极运动,因此这些偶极运动也是沿着螺旋轴的方向,其总体效应是一个有意义的净偶极。α-螺旋的氨基酸可提供部分正电荷,羧基端可提供部分负电荷,这些电荷可以攻击其反电荷的配基。带负电荷的配基,尤其当它们含有磷酸基团时,通常结合在α-螺旋的氨基酸。这可能是由于附加的偶极效应,α-螺旋的氨基端有自由的NH基团和较为有利的几何位置,可以与磷酸基团形成特殊的氢键。这样的配基互相作用在蛋白质结构中是较为常见的,同时也是一个很好的仅与主链构象有关的通过主链专一性相互作用的例子。
2、β-折叠
蛋白质的另一种主要结构成分是β-折叠,这种结构是由蛋白质分子中几段区域的称为β-链的多肽链形成的。在β-折叠中,β-链通常有5-10个残基的长度,肽链处于舒展的构象状态,这些β-链互相靠近并向前延伸,一条β-链的C=O基团和另一条β- 链的NH基团形成氢键。几条这样的β-链形成的β-折叠,Ca原子处于β-折叠的上部和下部,侧链也交替地指向β-折叠的上部和下部。
β -链可以两种方式形成β-折叠。一种是所有β-链均具有相同的方向,称为平行β-折叠;另一种是相互靠近的两条β-链具有相反的方向,称为反平行β-折叠。这两种β-折叠有β-链有着截然不同的氢键模式。反平行β-折叠的β-链间的氢键方向几乎垂直于β-链,平行β-折叠的平行β-链间的氢键方向则与平行β-链方向呈若干角度。在这两种平行β-折叠中,除了位于两侧的β-链外,所有肽链上的C=O基团和NH基团都形成了氢键。β-折叠也可以以混合的平行和反平行的形式存在。在已知蛋白质结构的β-折叠中,大约有20%的情况是一边为平行β-链而另一边为反平行β-链,几乎所有的β-折叠,不管是平行的或是混合的,均存在着链的扭曲,这种扭曲总是具有相同的手性,通常大部分为右手扭曲。
二、蛋白质的超二级结构
l 、α-环-α花样
若干二级结构可以特殊的几何组合出现在蛋白质结构中,这些组合起来的结构单元称作超二级结构或花样。超二级结构可与某些特殊的生物功能相联系,也可仅作为结构的组装块。α-环-α花样是含有两个α-螺旋,并以一个环区域相连接的具有特殊功能的超二级结构。在已知的蛋白质结构中观察到两种这样的花样,一种是 DNA结合花样,另一种是钙结合花样又称EF手,每种都有自己的几何形状和所需的氨基酸残基序列。
澳大利亚沃尔特和伊丽莎霍尔医学研究所团队在对抗帕金森病的斗争中取得重大突破:他们成功解开了一个长达数十年的谜团,确定了人类PINK1蛋白与线粒体结合的具体结构,为开发治疗帕金森病的新药开辟了新道路。这......
暨南大学生命科学技术学院教授邹奕团队在广东省重点研发项目、广东省自然科学基金等项目的资助下,研究发现转甲状腺激素蛋白或成术后认知功能障碍诊断新标志物,有望助力早期干预。近日,相关成果发表于《分子精神病......
过去几年里,单细胞蛋白质组学技术取得了长足发展,单细胞蛋白质组学逐渐走向成熟,后续有望广泛应用于肿瘤异质性分析、免疫学研究、发育生物学、神经科学以及精准医学等领域。然而,从技术发展成熟到实际场景应用分......
记者20日从西湖大学获悉,该校未来产业研究中心、生命科学学院、西湖实验室卢培龙课题组首次实现跨膜荧光激活蛋白的从头设计,这也是首个通过人工设计得到的、能够精确结合特定小分子的跨膜蛋白。相关研究成果当天......
水稻是重要的主食来源。真菌Magnaportheoryzae引起的稻瘟病是水稻的严重病害。有研究发现,抗病受体NLR类蛋白在植物免疫调控中发挥重要作用,并在分子抗病育种中得到广泛使用。而NLRs介导的......
新加坡国立大学Morinaka,BrandonI.团队报道了具有独特的结构褶皱,并催化环烷形成和β-羟基化的融合自由基SAM和αKG-HExxH结构域蛋白。相关研究成果发表在2024年9月18日出版的......
美国斯坦福大学StevenM.Banik研究团队发现通过蛋白运输耦合的靶向蛋白重定位。相关论文于2024年9月18日在线发表在《自然》杂志上。研究人员识别了一组具有强效配体的转运蛋白,这些配体适合于纳......
南京医科大学生殖医学与子代健康全国重点实验室郑科教授和郭雪江教授与南京医科大学基础医学院神经生物学系林明焰副教授及中南大学谭跃球教授等团队合作,在Science期刊发表了题为:TheLandscape......
日前,西湖大学、西湖实验室特聘研究员闫浈团队在《细胞》上连续发表了两篇关联论文,报道了在叶绿体蛋白转运的动力机制上取得的又一重大突破——揭示了叶绿体蛋白转运的动力机制及其进化多样性,为该领域的研究开辟......
8月15日,中国科学院分子植物科学卓越创新中心范敏锐研究组联合复旦大学张金儒团队、美国爱荷华州立大学GwynA.Beattie团队,在《科学进展》(ScienceAdvances)上发表了题为Stru......