Antpedia LOGO WIKI资讯

自动化所等在多模态探针研发中取得系列进展

恶性肿瘤(癌症)是当今严重威胁人类健康的主要疾病之一。早期诊断与准确定位肿瘤已经成为目前临床上提高患者手术效果和生存周期的挑战性难题。目前多项研究通过现有的成像方式(核磁、CT、光声等)对肿瘤进行成像,然而单一的成像方式存在灵敏度低、特异性差或空间分辨率低等缺点,因此多模态成像方式成为研究热点,多模态探针的研发也随之成为研究的重点。中国科学院自动化研究所分子影像重点实验室研究员田捷团队的助理研究员尚文婷利用重点实验室自主研发的多模成像设备,开展了系列多模态探针及肿瘤成像相关研究。 最常见的中枢神经系统的肿瘤——恶性脑胶质瘤,是目前导致高死亡率的主要原因。尚文婷等自主研发了一种新型纳米探针NMOF,利用NMOFs上配位不饱和金属位点合成核壳结构Au@MIL-88(Fe)纳米探针(见图),通过多模态技术手段对肿瘤进行精准成像。该造影剂能够同时进行核磁、CT、光声成像,提高成像的质量,实现对肿瘤内部结构成像,极大减少造影剂的用量......阅读全文

多模态PET驱动跨学科临床前期成像

多模态PET驱动跨学科临床前期成像作者:Sonica van Wyk,Bruker Biospin核分子成像市场产品经理断层成像是一种广泛应用于各种领域的成像技术,包括放射学、核医学,以及地球物理和材料科学。它根据一个物体的截面或投影提供三维信息,常见的例子包括X射线、计算机断层扫描(CT)、正电子

深圳先进院多模态纳米探针研究取得进展

  近日,材料科学国际学术期刊Advanced Functional Materials发表了中国科学院深圳先进技术研究院纳米医疗技术研究中心蔡林涛课题组高笃阳、张鹏飞等研究组成员的最新成果:Highly Bright and Compact Alloyed Quantum Rods wit

近红外发光量子棒可用于构建多模态纳米探针

  随着多模态成像技术的发展,迫切需要开发与多模态成像系统相应的新型多模态造影剂,即只需一次注射一种造影剂,便可实现两种或多种成像功能。目前磁共振成像(MRI)采用非侵入性监测方式深入组织,可提供解剖的细节和高质量的软组织的三维图像,但是其灵敏度相比放射性或光学方法而言较低;近红外荧光成像 (N

自动化所等在多模态探针研发中取得系列进展

  恶性肿瘤(癌症)是当今严重威胁人类健康的主要疾病之一。早期诊断与准确定位肿瘤已经成为目前临床上提高患者手术效果和生存周期的挑战性难题。目前多项研究通过现有的成像方式(核磁、CT、光声等)对肿瘤进行成像,然而单一的成像方式存在灵敏度低、特异性差或空间分辨率低等缺点,因此多模态成像方式成为研究热点,

研究团队:多模态眼功能成像新技术无创筛查重大慢病

  人类大脑获得外界信息80%以上是通过眼睛感知的,因此眼健康对保证人们的生活质量至关重要。同时,人眼还是观察脑认知、人体代谢、人体微循环与心脑血管状态的天然窗口,多种重大慢病可能并发或继发眼病。临床研究还证实,眼底病变具有高血压、脑卒中、冠心病、神经退行性病变、糖尿病和肾病等多种慢病的标志性特征,

多模态同步语言神经影像数据集发布

  大脑在加工语言时,需要实时调动多个脑区的神经元进行协同工作。构建高时空分辨率的神经影像数据可以帮助我们更好地了解各个脑区以及脑区之间的协同合作,对于探索大脑的语言加工机制至关重要。当前已有的开源数据主要针对英文采集,只包括单一模态的神经影像数据,如高空间分辨率的功能核磁共振(fMRI)或高时间分

多模态同步语言神经影像数据集发布

  大脑在加工语言时,需要实时调动多个脑区的神经元进行协同工作。构建高时空分辨率的神经影像数据可以帮助我们更好地了解各个脑区以及脑区之间的协同合作,对于探索大脑的语言加工机制至关重要。当前已有的开源数据主要针对英文采集,只包括单一模态的神经影像数据,如高空间分辨率的功能核磁共振(fMRI)或高时间分

北大“小动物多模态分子医学影像系统”可用于新药研制

  在2014年全国科技活动周北京主会场,各种尖端科技争相上演之际。由北京大学生物医学工程系参展的“小动物多模态分子医学影像系统”吸引着众多参观群众。  “小动物多模态分子影像重大科研仪器及关键技术研究是将X射线断层成像(CT)、正电子发射断层成像(PET)、单光子发射断层成像(SPECT)、荧光分

组织任意来源的图像,实现多模态数据关联

  ——蔡司 ZEN Connect 助力材料科学研究  大学、研究机构及工业实验室的材料研究人员均可以利用蔡司ZEN Connect软件,整合所有的显微成像技术(甚至包括非蔡司的系统)来为自己的研究服务。  获得独特洞察力,提高效率,节省时间  蔡司 ZEN Connect允许用户对齐和叠加任意来

我国学者研制多色荧光成像技术,可精准分离特定信号

  荧光蛋白的发现革新了生命科学的研究,应用荧光蛋白可以观测到细胞内部的活动,例如荧光蛋白可以标记特定的蛋白,也可以作为报告探针用于检测特定基因的活性。荧光蛋白的开发和进化使其光谱得到了全面的扩展,也使得多个荧光蛋白的同时使用成为可能。图:(左)1-4色荧光报告系统的质粒系统示意图,(右)串色校正后