我国在铜催化α烯烃不对称马氏硼氢化研究中取得进展

烯烃的不对称硼氢化反应是一类重要的有机合成反应,自从1961年,Brown教授首次报道了烯烃的不对称硼氢化反应以来,该类反应取得了诸多进展,已经实现苯乙烯、活化烯烃和含诱导基团烯烃等底物的不对称硼氢化。但是,作为直接来源于石油化工的大宗化学品,简单、非活化α-烯烃的不对称马氏硼氢化反应,不管是催化或者非催化反应,都一直未能有效实现。实际上,由于难于实现反应性、区域选择性和对映选择性的同时调控,尤其是对对映选择性的控制,α-烯烃的不对称催化转化仍然是手性合成领域的一大挑战,目前只有极少数的反应能够实现超过90%的对映选择性。图1:铜/(R,R,R,R)-ANIPE催化的α-烯烃不对称马氏硼氢化反应 手性配体在不对称催化合成领域扮演着关键角色。手性氮杂卡宾配体由于具备容易合成、结构可调、以及可以调控过渡金属复合物的稳定性和催化活性等特点,其设计合成一直是研究热点之一,得到广泛关注。但是相对于手性膦配体,成功的手性氮杂卡宾配体例......阅读全文

我国在铜催化α烯烃不对称马氏硼氢化研究中取得进展

  烯烃的不对称硼氢化反应是一类重要的有机合成反应,自从1961年,Brown教授首次报道了烯烃的不对称硼氢化反应以来,该类反应取得了诸多进展,已经实现苯乙烯、活化烯烃和含诱导基团烯烃等底物的不对称硼氢化。但是,作为直接来源于石油化工的大宗化学品,简单、非活化α-烯烃的不对称马氏硼氢化反应,不管是催

硼氢化反应的反应特点

  (1)反应过程不发生重排;  (2)反应为顺式加成;  (3)与不对称烯烃加成时,符合反马尔可夫尼可夫规则。硼原子加到含氢原子较多的双键碳原子上,而氢则加在含氢较少的碳原子上。

硼氢化反应的反应类型介绍

  有机硼烷可以发生多种反应,是一个多能的中间体,可以用来合成多种类型的有机化合物。例如:烯烃的硼氢化-氧化反应可以制备醇;炔烃的硼氢化-氧化可以制备醛和酮。需要注意的是:乙硼烷是一种在空气中能自燃的气体,不能预先制备,通常是把氟化硼的乙醚溶液加到硼氢化钠与烯烃的混合物中,使乙硼烷一生成立即与烯烃起

烯烃不对称催化转化研究获进展

近日,华东理工大学化学与分子工程学院教授陈宜峰课题组在烯烃的不对称催化转化领域取得新进展。相关研究成果以《镍催化内烯的对映选择性还原胺甲酰基-烷基化反应》为题,发表在《德国应用化学》上。 近年来,过渡金属催化烯烃分子内不对称双官能团化环合反应已经逐渐成为构建手性环状骨架最为重要的方法之一。

简述硼氢化反应的常用试剂

  9-硼双环[3.3.1]壬烷(二聚体)(别称9-BBN DIMER)可作硼氢化反应试剂,与烯烃反应有较高的选择性,控制条件时,可以只与位阻较小的双键反应。生成的烷基硼可以进行多种反应,广泛应用于碳氢键、碳氧键、碳氮键、碳碳键的形成,如发生氧化得到醇,发生还原得到烃,以及发生Suzuki反应等。在

关于硼氢化反应的基本信息介绍

  硼氢化反应,重要的有机合成反应之一。乙硼烷在醚类溶液中离解成的甲硼烷以B—H键与烯烃、炔烃的不饱和键加成,生成有机硼化合物的反应。其特点是:(1)反应过程不发生重排;(2)反应为顺式加成;(3)与不对称烯烃加成时,符合反马尔可夫尼可夫规则。

锂电池添加剂材料有机硼化物的介绍

  含有B-C键或者说含有硼原子的有机化合物,叫有机硼化物。主要的有硼烷、烃基取代硼烷和含氮的硼化物。硼烷(即硼氢化合物)又可分为硼烷和氢化硼烷。烷基硼:由硼烷与不对称烯烃按照反马氏规则进行加成,生成三取代烷基硼。三烷基硼是有机合成的重要试剂和中间体,在有机合成方面用途广泛。如与烯烃进行硼氢化-氧化

大连化物所:铜催化非活化烯烃/炔烃的不对称氢胺化羰基化反应

  近日,中国科学院大连化学物理研究所生物能源研究部催化羰基化研究组研究员吴小锋团队,在不饱和键的羰基化反应方面取得新进展,发展了一种不对称铜催化的非活化烯烃/炔烃的氢胺化羰基化反应,得到了一系列烷基酰胺类化合物。  吴小锋团队致力于发展不同催化体系,以实现碳碳不饱和键的羰基化双官能团化反应。在前期

新催化体系实现芳基烯烃的不对称氢氟化

近日,中国科学院成都生物研究所天然产物研究中心廖建研究员团队发展了一个有效的催化体系,实现了芳基烯烃的不对称氢氟化,合成了系列手性苄基氟化合物,包括实现天然产物的后期手性氟化修饰,并通过低温核磁共振技术,对反应机理进行系统深入的研究。相关研究成果发表于国际期刊ACS Catalysis,论文第一作者

兰州化物所仿生催化烯烃不对称环氧化研究获系列进展

  非血红素蛋白酶广泛存在于哺乳动物、植物、细菌等各种生命体中并已存在了上亿年,它们通过活化大气中的氧气从而生成具有高催化效率和高选择性的金属-氧活性中间体,将这些中间体进一步催化合成和转化成各种生命活动所需的化合物。通过对这些蛋白酶的仿生模拟,可发展出环境友好、高效的催化剂。因此,非血红素蛋白酶的

成都生物所β氨基硝基烯烃的不对称还原研究取得突破

     反应过程图   手性β-胺基硝基烷烃是一类重要的手性化合物,它不仅是手性1, 2-二胺的直接前体,同时还可以转化为手性α-胺基羰基化合物。理论上讲,对β-胺基硝基烯烃进行不对称催化还原是合成手性β-胺基硝基烷烃化合物最简便直接的一种方法。然而,由于硝基官能团的存在,致使该

上海有机所烯烃不对称催化氢化研究取得进展

  不对称催化氢化反应为种类繁多的手性化合物的合成提供了一条简便、廉价且环境友好的途径,目前已在一些手性药物和农药的工业生产中取得实际应用,占工业化不对称催化反应的70%以上。然而,许多底物的不对称氢化仍然存在催化活性不高、对映选择性不佳或催化剂的底物适用性不够广泛等困难。因此,开发高效、高选择性的

化学所烯烃催化不对称卤环化研究取得新进展

  烯烃的卤化反应是合成化学中最重要的基元反应之一,为烯烃的功能化提供了非常简便有效的途径。烯烃的不对称卤化反应则可在双键上同时引入两个手性中心,产物中的卤原子可以进一步发生多种转化,如立体选择性的取代反应等,方便快捷的构建丰富的合成中间体。然而,由于烯烃的不对称卤化反应极具难度,目前报道的催化体系

共轭二烯烃的聚合反应

聚合反应聚合反应通过聚合反应,生成相对分子质量高的聚合物。除和一般烯烃一样发生加成反应外,特点是能起1,4-加成之类的反应,也容易聚合。如1,3-丁二烯(CH2=CH-CH=CH2)聚合生成-[-CH2-CH=CH-CH2-]n-

共轭二烯烃的电环化反应

电环化反应电环化反应直链共轭多烯烃可发生分子内反应,π键断裂,双键两端碳原子以σ键相连,形成一个环状分子。电环化反应的显著特点是高度的立体专一性,即在一定条件下(光或热)生成特定构型的产物。电环化反应是周环反应的一种类型 ,所谓周环反应是指在化学反应过程中能形成环状过渡态的一些协同反应, 它不受溶剂

关于烯烃的催化加氢反应介绍

  烯烃与氢作用生成烷烃的反应称为加氢反应,又称氢化反应。  加氢反应的活化能很大,即使在加热条件下也难发生,而在催化剂的作用下反应能顺利进行,故称催化加氢。  在有机化学中,加氢反应又称还原反应。  这个反应有如下特点:  ① 转化率接近100%,产物容易纯化。(实验室中常用来合成小量的烷烃;烯烃

氨基与烯烃加成反应条件

催化剂活化烯烃的双键。烯烃可以和胺反应,机理是催化剂活化氨基的双键是电子云密度发生偏移,胺含有孤对电子的N原子进攻双键的一端,从而发生亲核加成反应。氨基和胺基的区别是什么,其实严格意义上来说只有氨基并没有胺基。一般当NH是在该物质的官能团排序是最高的话,就是胺。

概述共轭二烯烃的双烯合成反应

  又称狄尔斯-阿尔德(Diels-Alder反应)。共轭二烯烃和某些具有碳碳双键、三键的不饱和化合物进行1,4一加成,生成环状化合物的反应称为双烯合成反应。  狄尔斯一阿尔德反应是协同反应,即旧键的断裂和新键的形成是相互协调地在同一步骤中完成的。在光照或加热的条件下,反应物分子彼此靠近,互相作用,

简述烯烃的加次卤酸反应

  烯烃与卤素的水溶液反应生成β-卤代醇:  CH2=CH2+HOX→CH2X-CH2OH  卤素、质子酸,次卤酸等都是亲电试剂,烯烃的加成反应是亲电加成反应。反应能进行,是因为烯烃大π键的电子易流动,在环境(试剂)的影响下偏到双键的一个碳一边。如果是丙烯这样不对称烯烃,由于烷基的供电性,使π键电子

烯烃的化学性质与反应

烯烃的化学性质比较稳定,但比烷烃活泼。考虑到烯烃中的碳碳双键比烷烃中的碳碳单键强,所以大部分烯烃的反应都有双键的断开并形成两个新的单键。催化加氢反应烯烃与氢作用生成烷烃的反应称为加氢反应,又称氢化反应。加氢反应的活化能很大,即使在加热条件下也难发生,而在催化剂的作用下反应能顺利进行,故称催化加氢。在

兰州化物所惰性sp3碳氢键不对称转化研究获进展

过渡金属催化的不对称碳-氢键活化是手性科学中重要的前沿领域之一。但该领域,尤其是惰性sp3碳-氢键立体选择性活化研究仍面临挑战。中国科学院兰州化学物理研究所羰基合成与选择氧化国家重点实验室徐森苗团队一直致力于过渡金属催化的碳氢化合物的区域和立体选择性硼化反应。前期,该团队通过发展新策略,实现了烯烃的

中国科大烯烃氢碳化反应研究获进展

  近日,中国科学技术大学教授傅尧课题组与清华大学教授刘磊课题组合作,在烯烃氢碳化反应及其应用中取得新进展。研究成果发表在4月2日的Nature Communications上(DOI: 10.1038/ncomms11129)。论文共同第一作者为中国科大博士研究生陆熹和副教授肖斌。  烯烃是有机化

关于烯烃的亲电加成反应介绍

  一、加卤素反应  烯烃容易与卤素发生反应,是制备邻二卤代烷的主要方法:  CH2=CH2+X2→CH2X-CH2X  ① 这个反应在室温下就能迅速反应,实验室用来鉴别烯烃的存在.(溴的四氯化碳溶液是红棕色,溴消耗后变成无色)  ② 不同的卤素反应活性规律:  氟反应激烈,不易控制;碘是可逆反应,

烯烃亲电加成反应的相关介绍

  烯烃可以与多种亲电试剂发生加成反应。例如烯烃与溴的加成,溴分子受到外界影响极化为一端带微正电荷、另一端带微负电荷的极性分子(见结构式a),其正端与烯烃双键作用,最初形成π配位化合物(b),接着发生共价键异裂而得带正电荷的σ配合物(c)和溴离子: 自由基加成。自由基加成反应属于自由基反应的范畴,比

关于共轭二烯烃的电环化反应介绍

  电环化反应直链共轭多烯烃可发生分子内反应,π键断裂,双键两端碳原子以σ键相连,形成一个环状分子。电环化反应的显著特点是高度的立体专一性,即在一定条件下(光或热)生成特定构型的产物。  电环化反应是周环反应的一种类型 ,所谓周环反应是指在化学反应过程中能形成环状过渡态的一些协同反应, 它不受溶剂极

共轭二烯烃的亲电加成反应

和1,2-加成和1,4-加成:极性试剂有利于1,4-加成;低温有利于1,2-加成,高温有利于1,4-加成。共轭二烯烃同普通烯烃一样,容易与卤素、卤化氢等亲电试剂发生加成反应;它的特点是比普通烯烃更容易发生加成反应,但由于中间体变化,生成多种加成产物.共轭二烯的部分加成产物,即1,2-和1,4-加成产

化学所基于手性烯烃发展高选择性不对称氢化新催化体系

  烯烃的来源广泛,能够进行丰富多彩的化学转化,同时由于自身良好的稳定性以及与过渡金属之间独特的相互作用,还具备作为配体的重要功能。手性烯烃作为一类新型配体,成功地实现了一些挑战性的不对称催化反应,充分显示出这类配体的重要研究价值和良好应用前景。   在国家自然科学基金委、科技部、中国科学院的支持

陈宜峰团队在烯烃的不对称催化转化领域取得新进展

近日,华东理工大学化学与分子工程学院教授陈宜峰课题组在烯烃的不对称催化转化领域取得新进展。相关研究成果以《镍催化内烯的对映选择性还原胺甲酰基-烷基化反应》为题,发表在《德国应用化学》上。近年来,过渡金属催化烯烃分子内不对称双官能团化环合反应已经逐渐成为构建手性环状骨架最为重要的方法之一。其中,镍催化

关于共轭二烯烃醛的Wittig烯化反应

  RuiTamura等人[10]在1987年报道了Wittig反应合成共轭二烯的方法,通过醛和磷的内鎓盐的烯化作用,该反应对内鎓盐的类型和条件有较高要求,反应先要合成内鎓盐,是烯丙基磷酸盐用n-BuLi或t-BuLi在THF中处理,然后再加入醛酮而得。适用范围广,芳香、脂肪族二烯均有效,但收率不是

共轭二烯烃的亲电加成反应介绍

  和1,2-加成和1,4-加成:极性试剂有利于1,4-加成;低温有利于1,2-加成,高温有利于1,4-加成。  共轭二烯烃同普通烯烃一样,容易与卤素、卤化氢等亲电试剂发生加成反应;它的特点是比普通烯烃更容易发生加成反应,但由于中间体变化,生成多种加成产物.共轭二烯的部分加成产物,即1,2-和1,4