光合碳循环(photosyntheticcarboncycle)

光合作用中碳同化(二氧化碳转化为糖或其磷酸酯)的基本途径。又称卡尔文循环、还原戊糖磷酸循环、还原戊糖磷酸途径。在绿色植物、蓝藻和多种光合细菌中普遍存在。其他碳同化途径如 C4 途径和 CAM途径(见景天科酸代谢)所固定的 CO2 ,最终仍须通过光合碳循环才能被还原成糖。因此它是地球上绝大部分有机物形成的必经途径。 M.卡尔文及其同事 A. A.本森等从 1946年开始,应用新问世的 14 C标记的 14 CO2 示踪,并结合纸层析技术,研究了小球藻、栅藻等进行光合作用时碳同化的最初产物,从双相纸层析放射自显影的图谱中看到从 14 CO2 形成了 20余种带 14 C标记的化合物。将照光时间渐次缩短至秒级,外推至零时,判断其中最早出现的是磷酸甘油酸( PGA)。从 14 C在各同化分子中不同原子间分布的顺序,推断出 C3, C4, C5, C6, C7,糖磷酸酯之间的关系以及它们从 PGA形成的先后顺序。根据①......阅读全文

光合碳循环-(photosynthetic-carbon-cycle)

光合作用中碳同化(二氧化碳转化为糖或其磷酸酯)的基本途径。又称卡尔文循环、还原戊糖磷酸循环、还原戊糖磷酸途径。在绿色植物、蓝藻和多种光合细菌中普遍存在。其他碳同化途径如 C4 途径和 CAM途径(见景天科酸代谢)所固定的 CO2 ,最终仍须通过光合碳循环才能被还原成糖。因此它是地球上绝大部分有机物

《科学》:叶绿素D可能影响全球碳循环

此前研究认为,叶绿素D对地球碳循环的作用可以忽略不计 日本一研究小组在新一期美国《科学》杂志上报告说,一种能使光合作用在近红外线照射下进行的物质——叶绿素D在地球海洋与湖泊中广泛存在,这种叶绿素可能是地球上碳循环的驱动力之一。 此前的研究认为,叶绿素D只存在于少数海洋藻类内部,分布在海洋中很有限

高寒灌丛土壤碳循环研究获进展

  近日,中国科学院成都生物研究所博士研究生王东在导师刘庆和尹华军的指导下,研究了青藏高原东缘窄叶鲜卑花高寒灌丛土壤碳收支对不同氮添加水平的响应。相关研究结果发表于《农业和森林气象学》期刊。  高寒灌丛是陆地生态系统的重要组成部分,由于高寒灌丛生态系统的特点以及研究历史等原因,与森林和草地相比,目前

某些藻类的增加可影响碳循环

  两项新的研究报告了浮游植物丰度和性质发生的急剧变化,它们对储存过量的碳具有重要的含义。总的来说,这些研究提出,一些类型的碳密集型藻类正在繁盛地生长,它们将充当日益重要的碳泵的角色。应用深水软珊瑚骨骼中埋置的浮游植物氨基酸的同位素特征,Kelton McMahon和同事确定了在过去一千年里北太平洋

俯冲带深部碳循环研究获进展

日前,中国科学院海洋研究所研究员张国良团队在俯冲带深部碳循环研究取得新进展,相关成果发表于美国地球物理学会旗舰期刊《地球物理研究杂志-固体地球》。该研究通过高温高压实验并结合热力学数值模拟,明确了俯冲带水对碳酸岩熔体出现的重要影响及其稳定存在的温压范围,揭示了俯冲带弧下深度含水碳酸岩熔体是迁移碳的重

碳循环生物和大气之间的循环

  绿色植物从空气中获得二氧化碳,经过光合作用转化为葡萄糖,再综合成为植物体的碳化合物,经过食物链的传递,成为动物体的碳化合物。植物和动物的呼吸作用把摄入体内的一部分碳转化为二氧化碳释放入大气,另一部分则构成生物的机体或在机体内贮存。动、植物死后,残体中的碳,通过微生物的分解作用也成为二氧化碳而zu

ACS-Catalysis:人工固碳循环研究取得进展

  工业快速发展导致二氧化碳等温室气体排放不断增加,促使各国加速开发二氧化碳捕集利用技术。其中,设计和创建具有高效生物固碳能力的酶、生化途径、工程生物或微生物组,已成为合成生物固碳领域的研究热点。  自然界中,植物和微生物可利用六条天然固碳途径将二氧化碳转化为有机物,其中重要途径之一就是以1,5-二

东北地理所揭示大豆光合碳在不同有机质黑土中的转化差异

  光合碳在植物-土壤-微生物间的转化深刻影响土壤碳及全球碳循环。然而,大豆光合碳在不同土壤中的转化,以及对土壤碳沉积的贡献还鲜见报道。   中科院东北地理与农业生态研究所金剑研究员等开展研究,通过对生长在高、中、低有机质黑土上的大豆进行CO2标记,解析光合碳在地下部的动态去向。研究结果表明,在低

光合作用的光合速率定义

光合速率通常是指单位时间单位叶面积所吸收的二氧化碳或释放的氧气的量,也可用单位时间单位叶面积上的干物质积累量来表示。

亚热带生态所揭示水稻光合碳的微生物利用机制

  由中国科学院亚热带农业生态研究所研究员吴金水领衔的农业生态过程方向研究团队近日在水稻光合碳的微生物利用机制方面取得了新进展。  作物光合碳以根际沉积物的形式进入土壤,是根际微生物的主要碳源和能量来源。根际微生物能够通过自身代谢活动将这部分碳源或以气体的形式返回大气,或以有机质的形式存储于土壤中。

合肥研究院海洋初级生产力测量新方法研究取得进展

  近日,中国科学院合肥物质科学研究院安徽光学精密机械研究所研究员赵南京课题组在海洋浮游植物初级生产力测量新方法研究方面取得新进展,相关研究结果在《光学学报》以优秀论文发表(光学学报,2018,38(11): 1126001)。  初级生产力(GPP)是指浮游植物在单位时间、单位体积内通过光合作用产

深海冷泉甲烷碳循环研究获新进展

原文地址:http://news.sciencenet.cn/htmlnews/2023/5/500478.shtm

碳循环模拟和数据同化研究方面取得进展

  模型数据融合方法和多模型集成分析是研究陆地生态系统碳循环过程时空变化的有效手段。中国科学院地理科学与资源研究所何洪林研究小组应用中国生态系统研究网络(Chinese Ecosystem Research Network, CERN)长期动态监测数据,结合生态系统过程模型和模型数据融合方法,取得一

光合作用强度就是光合速率吗

是。光合速率:光合作用强弱的一种表示法,又称“光合强度”。光合速率的大小可用单位时间、单位叶面积所吸收的二氧化碳或释放的氧气表示,亦可用单位时间、单位叶面积所积累的干物质量表示。影响因素外部因素1.光照(1)光强度对光合作用的影响光合作用的光抑制:光照不足会成为光合作用的限制因素,光能过剩也会对光合

净光合速率和总光合速率的区别

净光合速率和总光合速率的区别如下:总光合速率是在光照条件下,叶绿体所进行的光合作用的速率。一般可用单位时间内氧气的产生量(光反应中水的光解产生的氧气的量)或二氧化碳的固定量(暗反应中二氧化碳的固定消耗二氧化碳得量)来表示。净光合速率=总光合速率-呼吸速率。要理解这个概念,你得知道,在光照条件下,光合

光合仪光源

  光是植物生长必不可少的能量来源,对植物的光合作用、生长发育、形态建成和物质代谢等都有调控作用。而目前在温室、人工气候室、大棚种植中,弥补太阳光缺失所用的光源一般是荧光灯、高压钠灯和白炽灯等,这些光源的光谱能量分布是依据人眼对光的需求设计的,而植物生长所需要的光谱与人眼的需求是不一样的。LED(半

光合色素介绍

叶绿体由双层膜、类囊体和基质三部分组成。类囊体是单层膜同成的扁平小囊,沿叶绿体的长轴平行排列。膜上含有光合色素和电子传递链组分,光能向化学能的转化是在类囊体上进行的。类囊体膜上的色素有两类:叶绿素和橙黄色的类胡萝卜素,通常叶绿素和类胡萝卜素的比例约为3 : 1,而叶绿素a(chl a)与叶绿素b(c

光合作用仪研究苏丹草光合速率

光合作用仪在植物光合速率和效率的研究过程中反映植物生长状况发挥着重要的作用,那么光合作用仪在实际的操作中是怎么实现的呢?为大家简单介绍一下该仪器对苏丹草日光合规律的分析。研究植物光合作用的主要目的是探索提高植物光合能力的措施,从而提高产量。研究表明,在夏季晴天条件下,苏丹草光合速率((Pn)日变化呈

光合有效辐射对柑桔光合生产的影响

    一般来说,果树树冠内光能的分布,直接影响着树冠各部位的着叶、开花结果、果实着色和品质以及全树的光合生产力。测光合有效辐射的仪器是光合有效辐射记录仪,因此利用光合有效辐射记录仪研究光合有效辐在栽培中的分布则律, 对提高柑桔光合生产效率, 增进果实产量和品质将有积极的意义。    试验中的以山田

便携式光合仪光合日变化测定实验

  光合日变化测定  实验准备及要求:  选择晴朗的天气。测定日变化时对照和处理材料必须时同一天测定,不同天测定的不能比较。  实验前一天将仪器充满电,检查仪器的吸收管,调试好仪器。  一般日变化测定时间为:6点8点10点12点14点16点18点。(用户可以根据自己的实验适当减少一个点) [4]  

净光合速率和真正光合速率怎么区分

  净光合速率是指植物光合作用积累的有机物,是总光合速率减去呼吸速率的值。  真正光合速率就是植物的光合速率,也叫总光合速率。  反映在有机物上,净光合速率是指植物在单位时间内积累的有机物的量,而真正光合速率则是指植物在单位时间制造有机物的量。  反映在坐标图上,一般画出的是净光合速率,可以看出其曲

光合仪测定光合基本参数实验指南

  光合仪是进行植物生理研究而开发生产的一款仪器设备,主要用来测定植物光合作用(呼吸)速率、蒸腾速率、气孔导度和胞间CO2浓度等,从而计算出植物光合速率、水分蒸发、水分利用效率、气孔阻抗等值,为判断植物生长情况提供了科学依据。  光合仪可测一些基本光合参数如Pn(净光合速率)、E(蒸腾速率)、Gs(

光合细菌发酵罐:光合细菌使用方法

光合细菌发酵罐:光合细菌使用方法1.酌情使用。使用时,将2-5g/m3的光合细菌与细干粪混合均匀撒入池塘,然后每隔20d左右,加水1-2g/m3,然后撒满整个池塘;使用虾蟹池时,用5-10g/m3掺入细干肥泥在池内均匀撒布,然后每隔20d左右加水2-5g/m3,再洒满整个池;在饲料中添加光合细菌(鱼

光合有效辐射计研究光合有效辐射对植物光合速率的影响

    农业仪器包括很多种类,比如叶绿素测定仪、叶面积测量仪、光合有效辐射计,智能光照培养箱等等,不同种类的仪器,其工作特点及工作原理都会不同,本文通过光合有效辐射计研究光合有效辐射对植物光合速率的影响。    作物的光合作用是作物生长过程中物质积累与生理代谢的基本单元,自然条件下植物的光合作用随着

地球碳循环深及下地幔有了直接证据

  科学家曾推测,碳循环可能深入到地球的内部,但一直没有证据支持这一观点。据美国物理学家组织网9月15日报道,最近,美国卡内基研究院的研究人员对来自地表以下700公里深处地幔层的钻石进行了分析,发现其包含的杂质成分与海洋底壳一致,为碳循环深及地表以下数百公里提供了第一个直接证据。论文发表在9月15日

“海洋兰炭”:把海洋碳循环机制弄清楚

  “没有大数据基础和科学指标,就无法进行‘碳交易’,生态补偿机制也就不能科学有效运行。”中科院院士、焦念志代表在回答科技日报提问时说,他正在参与组织的海洋兰炭计划“就是要把海洋碳循环的过程机制探讨清楚”。   3月5日上午,总理工作报告结束后,焦念志在人民大会堂一楼被记者团团围住,直到成为最后一个

《科学》:基于测量数据的地球碳循环轨迹初步摸清

  人类对气候的影响究竟有多大,要回答这个问题,首先必须清楚地球的碳循环轨迹。以德国马普生物地球化学研究所克里斯蒂安·比尔领导的一个国际研究小组最近发表了两份研究报告,首次根据测量数据估算出地球上二氧化碳的自然释放和吸收量,为研究全球气候变化提供了新的依据,这两份报告已刊登在新出版的

森林生态系统在碳循环中的作用

     森林生态系统在碳循环中的作用从人类认识到温室气体尤其是二氧化碳浓度的升高会使全球气温变暖,从而带来一系列严重生态环境问题时,就展开了对碳素循环的研究。而森林生态系统作为吸收二氧化碳释放氧气的一个大碳汇,在碳循环中起着非常重要的作用。全球森林面积为41.61亿公顷,其中热带、温带、寒带分别占

成都山地所植被碳循环参量反演建模研究取得新进展

  准确模拟陆地生态系统碳循环过程是预测气候变化的基础,也是目前全球变化研究中重要的前沿领域之一。生态模型作为研究碳循环过程的关键手段,其模拟过程需要时间序列连续的植被生理生态参数的支持。近年来,碳通量观测网的时空覆盖范围仍然有限,遥感数据能弥补地面观测的不足。采用数据同化方法将多源数据与生态过程模

烟台海岸带所滨海湿地碳循环与碳收支研究取得系列进展

  滨海湿地处于陆地生态系统和海洋生态系统的交错过渡地带,由于具有很高的生产力及氧化还原能力使其成为生物地球化学作用非常活跃的场所,在碳氮的储存方面起着极其重要的作用。中国科学院烟台海岸带研究所滨海湿地研究组于君宝研究团队依托中国科学院黄河三角洲滨海湿地生态试验站,从群落—生态系统—景观尺度上对滨海