亚热带生态所揭示水稻光合碳的微生物利用机制

由中国科学院亚热带农业生态研究所研究员吴金水领衔的农业生态过程方向研究团队近日在水稻光合碳的微生物利用机制方面取得了新进展。 作物光合碳以根际沉积物的形式进入土壤,是根际微生物的主要碳源和能量来源。根际微生物能够通过自身代谢活动将这部分碳源或以气体的形式返回大气,或以有机质的形式存储于土壤中。根际微生物对光合碳的利用能够显著影响土壤碳固定过程。因此,水稻光合碳的输入及其微生物利用机制研究对于输入理解水稻根际土壤碳循环和碳固定过程具有重要意义。 基于此,该团队利用短时间(6小时)的碳同位素(13C-CO2)脉冲标记技术结合氯仿熏蒸的微生物量测定的经典方法与磷脂脂肪酸的稳定同位素探针技术(13C-PLFA-SIP),发现水稻光合碳向土壤微生物生物量和磷脂脂肪酸组分快速转移的现象,揭示了真菌和革兰氏阴性菌是重要的光合碳的根际同化者,这两类微生物在水稻根际碳循环中起主要作用;同时水稻不同生育期光合碳的输入显著改变了水稻根际碳的微......阅读全文

亚热带生态所揭示水稻光合碳的微生物利用机制

  由中国科学院亚热带农业生态研究所研究员吴金水领衔的农业生态过程方向研究团队近日在水稻光合碳的微生物利用机制方面取得了新进展。  作物光合碳以根际沉积物的形式进入土壤,是根际微生物的主要碳源和能量来源。根际微生物能够通过自身代谢活动将这部分碳源或以气体的形式返回大气,或以有机质的形式存储于土壤中。

水稻光合碳在土壤中的固定机制

  水稻土是全球重要的碳汇,对缓解全球气候变化具有重要意义。光合碳(通过根际沉积作用)是水稻土壤高碳库的重要有机碳来源,对维持稻田土壤的碳汇功能起到十分重要的作用。水分和养分管理会影响水稻土光合碳分配和稳定性,优化水分和养分管理能够促进光合碳向土壤有机碳的转化和固定。  为此,中国科学院亚热带农业生

中科院亚热带所水稻根际沉积碳微生物利用研究获进展

  中科院亚热带农业所研究人员发现了水稻根际沉积碳在水稻不同生育期内的周转特征,相关论文近日发表在《国际土壤科学杂志》上。  根际沉积过程可为土壤微生物提供易于利用的碳源和能源,其在生态系统中调节土壤碳和养分循环中起重要作用,并对碳的固定作用产生强烈影响。水稻根际碳在水稻生长过程中的动态变化过程及其

生育期和施氮对水稻根际沉积碳的微生物利用机制

  根际沉积过程可为土壤微生物提供易于利用的碳源和能源,其在生态系统中调节土壤碳和养分循环中起重要作用,并对碳的固定作用产生强烈影响。水稻根际碳在水稻生长过程中的动态变化过程及其在微生物群落中的分配以及氮肥对该过程的影响机制尚不清楚。研究稻田土壤中水稻根际碳氮循环及其对微生物群落结构的调节有利于科学

生育期和施氮对水稻根际沉积碳的微生物利用机制获进展

  根际沉积过程可为土壤微生物提供易于利用的碳源和能源,其在生态系统中调节土壤碳和养分循环中起重要作用,并对碳的固定作用产生强烈影响。水稻根际碳在水稻生长过程中的动态变化过程及其在微生物群落中的分配以及氮肥对该过程的影响机制尚不清楚。研究稻田土壤中水稻根际碳氮循环及其对微生物群落结构的调节有利于科学

水稻根际沉积碳的输入和土壤固持对施氮的响应研究

  水稻根际沉积碳是稻田土壤有机质的重要来源,在土壤有机碳的固持与周转过程中发挥重要作用,但由于其代谢周转快,具有复杂性和多变性,尽管已有一些研究,但还不十分清楚这部分碳的命运。  根际沉积碳的输入受作物生长时期和施肥(如施氮)的影响较大。然而,不同生育期的碳同位素标记的估算有可能使光合碳(通过根际

稻田生态系统持续生产力研究通过验收

“稻田生态系统持续生产力与生态功能协调机制研究”通过验收  3月15日,中科院亚热带农业生态研究所吴金水研究员主持的中科院知识创新工程重要方向性项目“稻田生态系统持续生产力与生态功能协调机制研究”通过了课题验收。专家组由华中农业大学、中科院南京土壤所、中科院生态环境中心等单位组成。 

光合作用的碳同化

CO2同化(CO2assimilation)是光合作用过程中的一个重要方面。碳同化是通过和所推动的一系列CO2同化过程,把CO2变成糖类等有机物质。高等植物固定CO2的生化途径有3条:卡尔文循环、C4途径和景天酸代谢途径。其中以卡尔文循环为最基本的途径,同时,也只有这条途径才具备合成淀粉等产物的能力

植物光合碳同化的基本途径

大致可分为三个阶段,即羧化阶段、还原阶段和再生阶段。羧化阶段核酮糖-1,5-二磷酸(RuBP)在核酮糖二磷酸羧化酶/加氧酶(ribulose bisphosphate carboxylase/oxygenase,Rubisco)催化下,与CO2结合,产物很快水解为二分子3-磷酸甘油酸(3-PGA)反

研究发现水稻土微生物量碳含量是旱地土壤两倍

  水稻土壤和旱地土壤有何不同?中国科学院亚热带农业生态研究所首席研究员吴金水研究团队的一项科研成果发现,水稻土中的有机质可以支撑更多的微生物生物量,其微生物量碳含量是旱地土壤的两倍。  热带和亚热带地区长期植稻过程中形成了特殊的人工湿地土壤,即水稻土。相比于旱地土,水稻土具有特殊的氧化还原过程,土

碳四植物光合作用特点

在C4植物叶肉细胞的叶绿体中,在有关酶的催化作用下,一个CO2被一个叫做磷酸烯醇式丙酮酸的C3(英文缩写符号是PEP)固定,形成一个C4。C4进入维管束鞘细胞的叶绿体中,释放出一个CO2,并且形成一个含有三个碳原子的有机酸——丙酮。这种能够固定CO2的酶,叫做磷酸烯醇式丙酮酸羧化酶,简称PEP羧化酶

我国东部水稻土中微生物残留物对有机碳积累的贡献研究

  微生物可以通过合成代谢作用将不稳定的有机碳转化为自身细胞组成,通过细胞的生长和死亡过程最终以微生物残留物形式对稳定有机碳库有重要贡献,但真菌和细菌残留物在此过程中的贡献随气候带的改变不清楚。我国水稻土从北向南跨越中温带、暖温带、亚热带和热带四个气候区,不同气候区耕作强度和气候条件差别巨大,微生物

新发现!水稻土微生物量碳含量是旱地土壤两倍

   水稻土壤和旱地土壤有何不同?中国科学院亚热带农业生态研究所首席研究员吴金水研究团队的一项科研成果发现,水稻土中的有机质可以支撑更多的微生物生物量,其微生物量碳含量是旱地土壤的两倍。  热带和亚热带地区长期植稻过程中形成了特殊的人工湿地土壤,即水稻土。相比于旱地土,水稻土具有特殊的氧化还原过程,

科学家将给水稻“整容”

  正在北京参加第七届国际作物科学大会的国际水稻所所长马修·莫雷尔博士17日接受采访时表示,国际水稻研究所正组织全球的农业科学家对水稻进行“整容”,力争让水稻从碳3作物变成碳4作物或者具有碳4作物高效高产的特性。  马修·莫雷尔介绍,这项研究已经进行了7年,取得明显进展,但攻克这一技术难关还需全球合

碳四植物光合作用的特点

在C4植物叶肉细胞的叶绿体中,在有关酶的催化作用下,一个CO2被一个叫做磷酸烯醇式丙酮酸的C3(英文缩写符号是PEP)固定,形成一个C4。C4进入维管束鞘细胞的叶绿体中,释放出一个CO2,并且形成一个含有三个碳原子的有机酸——丙酮。这种能够固定CO2的酶,叫做磷酸烯醇式丙酮酸羧化酶,简称PEP羧化酶

不同微生物生物量水稻土有机碳矿化对铁氧化物响应进展

  长期淹水管理导致水稻土多处于厌氧状态,因此其有机碳矿化过程及其关键影响因子与旱地土壤相比具有特殊性。厌氧有机碳矿化多与氧化还原过程耦合,其中铁的异化还原对厌氧有机碳矿化的贡献可高达80%,这过程中涉及到许多特殊的功能微生物,土壤微生物生物量不同意味着这些功能微生物群落大小上的差异。然而,土壤微生

固碳新技术支撑有机水稻额外碳汇“第一拍”

日前,江苏省首张农业碳票在南京市高淳区东坝街道成功交易。现场,通过碳汇有偿竞价拍卖,标值130.67吨二氧化碳当量的农业碳汇,最终由红宝丽集团以每吨75元的价格成功拍下,总价9800.25元。江苏首张碳票诞生。南京农业大学供图这也是全国首次基于生物质炭在有机水稻上应用产生的额外碳汇进行的有偿竞价“第

碳四植物和碳三植物哪个光合作用的效率更高?

一般植物中,二氧化碳同化时固定的第一个产物是具有3个碳原子的磷酸甘油酸,采用这种途径的植物称碳3植物,,如大豆、棉花、小麦和稻等。而有些植物中,二氧化碳固定的第一个产物是具有4个碳原子的双羧酸,采用这种途径的植物称碳4植物,,如玉米、高粱和甘蔗等。二氧化碳首先在叶肉细胞内被固定在四碳双羧酸中,然后被

遗传发育所水稻光合效率提高的分子机理研究取得进展

  光合作用是绿色植物及光合细菌在光下利用光合色素,将二氧化碳和水转化为碳水化合物并释放氧气的过程,是整个生物界赖以生存的基础。提高光合作用效率是农作物增产的一个根本途径。   光合作用在绿色植物所特有的细胞器——叶绿体中进行,存在于叶绿体上的光合膜含有丰富的糖脂(半乳糖甘油酯),而

新研究揭示有机污染物降低水稻固碳的分子机制

光合固碳是植物生长的基础,也是推动全球碳循环的关键过程。但是,有机污染物也会降低水稻等植物的固碳效果,并进而影响作物产量。 近日,中国工程院院士、浙江大学教授朱利中团队在一项新研究中,揭示了有机污染导致水稻减产的分子机制,相关成果3月24日在线发表于《环境科学与技

新研究揭示有机污染物降低水稻固碳的分子机制

光合固碳是植物生长的基础,也是推动全球碳循环的关键过程。但是,有机污染物也会降低水稻等植物的固碳效果,并进而影响作物产量。 近日,中国工程院院士、浙江大学教授朱利中团队在一项新研究中,揭示了有机污染导致水稻减产的分子机制,相关成果3月24日在线发表于《环境科学与技

德借助人工光合作用高效固碳

  应对气候变化措施中,减少空气中温室气体含量是重要一项。德国研究人员日前报告说,他们在实验室中研究出一种人工光合作用方法,可以更快地固定空气中的二氧化碳。   植物光合作用中的卡尔文循环是一种重要的生物固碳形式,大气中的二氧化碳进入卡尔文循环转化成糖,这是减少大气中二氧化碳含量最便宜且副作用最少的

关于碳同化的光合产物输出速率的调节介绍

  光合作用最初产物磷酸丙糖从叶绿体运到细胞质的数量,受细胞质中Pi水平的调节。磷酸丙糖通过叶绿体膜上的Pi运转器运出叶绿体,同时将细胞质中等量的Pi运入叶绿体。当磷酸丙糖在细胞质中合成为蔗糖时,就释放出Pi。如果蔗糖从细胞质的外运受阻,或利用减慢,则其合成速度降低,Pi的释放也随之减少,会使磷酸丙

关于光合作用的碳同化的基本内容

  CO2同化(CO2assimilation)是光合作用过程中的一个重要方面。碳同化是通过和所推动的一系列CO2同化过程,把CO2变成糖类等有机物质。高等植物固定CO2的生化途径有3条:卡尔文循环、C4途径和景天酸代谢途径。其中以卡尔文循环为最基本的途径,同时,也只有这条途径才具备合成淀粉等产物的

微生物修复土壤低碳环保

  一块被污染过的土地是否只能惨遭遗弃?或许不用那么悲观。自然界最重要的污染物分解者——微生物已逐步被运用到治理土地污染中。  日前,在中国高科技产业研究会主办的新闻发布会上,土壤修复专家、北京三色微谷集团董事长王立平说,应用他们研发的“三色原菌剂”,可针对性改良因长期使用化肥、农药造成的土地板结,

袁隆平委员:莫将转基因食品“妖魔化”

  全国政协讨论会上,各路记者纷纷向杂交水稻育种权威袁隆平委员提问:“转基因粮食究竟安全不安全?我国有必要实施转基因项目吗?”   袁隆平在无党派人士界别讨论会上率先发言:“分子育种是今后的发展方向和必然趋势,我们常规育种已经差不多到极限了,要进一步提高水稻产量,就要借助于分子技术,而转基因就

我国揭示水分胁迫下水稻营养生长和逆境适应氮调控机制

  近期,我所稻作生态课题组从光合作用、氮吸收利用等方面揭示了水稻营养生长和干旱胁迫适应之间的调控机制。相关研究成果相继发表于学术期刊《Environmental and Experimental Botany》、《Physiologia Plantarum》、《Plant Physiology a

微生物所在大肠杆菌中实现碳浓缩固碳

  将CO2转化为燃料或化学品,是实现CO2的资源化利用、缓解资源能源短缺和温室效应的一种途径。经遗传改造的蓝细菌或者藻类等光合自养微生物,可以将CO2转化为包括乙醇、丁醇、丙酮、异丁醛、乳酸等在内的数十种化学品,但由于自养生物生长速度慢,CO2生物转化为这些化学品的效率还比较低。  异养生物可以通

叶片碳调控滨海“蓝碳”形成的微生物机制获揭示

原文地址:http://news.sciencenet.cn/htmlnews/2023/11/511849.shtm

叶片碳调控滨海“蓝碳”形成的微生物机制获揭示

  中国科学院华南植物园海岸带生态系统过程与环境健康研究组揭示了红树林叶片碳组分调控海岸带“蓝碳”形成的微生物机制。近日,相关成果在线发表于《全球变化生物学》。  论文第一作者、中国科学院华南植物园副研究员卢哲表示,植树造林是减缓红树林损失及增强其生态系统服务的有效途径。然而,在造林过程,红树林土壤