关于临界温度热敏电阻的介绍

临界温度热敏电阻(CTR,即 Critical Temperature Resistor)具有负电阻突变特性,在某一温度下,电阻值随温度的增加激剧减小,具有很大的负温度系数。构成材料是钒、钡、锶、磷等元素氧化物的混合烧结体,是半玻璃状的半导体,也称CTR为玻璃态热敏电阻。骤变温度随添加锗、钨、钼等的氧化物而变。这是由于不同杂质的掺入,使氧化钒的晶格间隔不同造成的。若在适当的还原气氛中五氧化二钒变成二氧化钒,则电阻急变温度变大;若进一步还原为三氧化二钒,则急变消失。产生电阻急变的温度对应于半玻璃半导体物性急变的位置,因此产生半导体-金属相移。CTR能够作为控温报警等应用。 热敏电阻的理论研究和应用开发已取得了引人注目的成果。随着高、精、尖科技的应用,对热敏电阻的导电机理和应用的更深层次的探索,以及对性能优良的新材料的深入研究,将会取得迅速发展。......阅读全文

关于临界温度热敏电阻的介绍

  临界温度热敏电阻(CTR,即 Critical Temperature Resistor)具有负电阻突变特性,在某一温度下,电阻值随温度的增加激剧减小,具有很大的负温度系数。构成材料是钒、钡、锶、磷等元素氧化物的混合烧结体,是半玻璃状的半导体,也称CTR为玻璃态热敏电阻。骤变温度随添加锗、钨、钼

关于热敏电阻的合金热敏电阻材料介绍

  合金热敏电阻材料亦称热敏电阻合金。这种合金具有较高的电阻率,并且电阻值随温度的变化较为敏感,是一种制造温敏传感器的良好材料。作为温敏传感器的热敏电阻合金性能要求如下:  (1)足够大的电阻率;  (2)相当高的电阻温度系数;  (3)具有接近于实验材料线膨胀系数;  (4)小的应变灵敏系数;  

关于热敏电阻的应用介绍

  热敏电阻也可作为电子线路元件用于仪表线路温度补偿和温差电偶冷端温度补偿等。利用NTC热敏电阻的自热特性可实现自动增益控制,构成RC振荡器稳幅电路,延迟电路和保护电路。在自热温度远大于环境温度时阻值还与环境的散热条件有关,因此在流速计、流量计、气体分析仪、热导分析中常利用热敏电阻这一特性,制成专用

关于热敏电阻合金的介绍

  热敏电阻合金已开始日益广泛地用于温度的监测和控制。如在环境监测、食品的长期储存、生物工程以及尖端军事工程等方面都获得了广泛的应用 。  热敏电阻合金一般均具有较高的电阻率和电阻温度系数,因此可以制成小型化的高灵敏度的测温传感器。如箔式应变片式测温传感器就是一种理想的结构件温度测量元件。此外热敏电

关于热敏电阻的检测介绍

  检测时,用万用表欧姆档(视标称电阻值确定档位,一般为R×1挡),具体可分两步操作:首先常温检测(室内温度接近25℃),用鳄鱼夹代替表笔分别夹住PTC热敏电阻的两引脚测出其实际阻值,并与标称阻值相对比,二者相差在±2Ω内即为正常。实际阻值若与标称阻值相差过大,则说明其性能不良或已损坏。其次加温检测

关于热敏电阻的基本特征介绍

  热敏电阻的电阻-温度特性可近似地用下式表示:R=R0exp{B(1/T-1/T0)}:R:温度T(K)时的电阻值、Ro:温度T0、(K)时的电阻值、B:B值、*T(K)=t(ºC)+273.15。实际上,热敏电阻的B值并非是恒定的,其变化大小因材料构成而异,最大甚至可达5K/°C。因此在较大的温

热敏电阻的金属热敏电阻材料的介绍

  此类材料作为热电阻测温、限流器以及自动恒温加热元件均有较为广泛的应用。如铂电阻温度计、镍电阻温度计、铜电阻温度计等。其中铂测温传感器在各种介质中(包括腐蚀性介质),表现出明显的高精度和高稳定的特征。但是,由于铂的稀缺和价格昂贵而使它们的广泛应用受到一定的限制。铜测温传感器较便宜,但在腐蚀性介质中

关于正温度系数热敏电阻实验的介绍

  实验表明,在工作温度范围内,PTC热敏电阻的电阻-温度特性可近似用实验公式表示:  R(T)=R(T0)*exp(Bp(T-T0))  式中R(T)、R(T0)表示温度为T、T0时电阻值,Bp为该种材料的材料常数。  PTC效应起源于陶瓷的粒界和粒界间析出相的性质,并随杂质种类、浓度、烧结条件等

关于负温度系数热敏电阻的基本介绍

  负温度系数(NTC)热敏电阻是指随温度上升电阻呈指数关系减小、具有负温度系数的热敏电阻现象和材料。该材料是利用锰、铜、硅、钴、铁、镍、锌等两种或两种以上的金属氧化物进行充分混合、成型、烧结等工艺而成的半导体陶瓷,可制成具有负温度系数(NTC)的热敏电阻.其电阻率和材料常数随材料成分比例、烧结气氛

关于热敏电阻的型号和发展的相关介绍

  热敏电阻符号是PTC,阻值随温度的变化而变化,有正温度型的负温度型,压敏电阻阻值随压力的变化而变化,高,中,低压压敏电阻:  产品主要有MYN型,MY31型以及MYG型三大型号  热敏电阻合金已开始日益广泛地用于温度的监测和撞制。如在环境监测、食品的长期储存、生物工程以及尖端军事工程等方面都获得

热敏电阻的半导体热敏电阻材料的介绍

  这类材料有单晶半导体、多晶半导体、玻璃半导体、有机半导体以及金属氧化物等。它们均具有非常大的电阻温度系数和高的电阻率,用其制成的传感器的灵敏度也相当高。按电阻温度系数也可分为负电阻温度系数材料和正电阻温度系数材料.在有限的温度范围内,负电阻温度系数材料a可达-6*10-2/℃,正电阻温度系数材料

临界温度的定义

热中性区的下端(靠低温端),称为下临界温度。超过下临界温度时,生物的耗氧量都会显著增加。低于临界温度时需增加产热量以保持体温,高于临界温度时需增加用于散热的能量。下临界温度会因动物的适应温度而变化,即使相同种类的个体,该值也会因风土驯化而不同。生活在极地的大型恒温动物,温度中性区很宽,其下临界温度比

临界温度的特点

当环境温度降到下临界温度以下时,动物增加耗氧量,提高代谢率,体内产热量增加,以维持恒定体温。 哺乳动物通过中枢神经系统调节体温。外界温度改变时,可刺激皮肤的感受器发生神经冲动传入中枢。血液温度的改变,可直接刺激下丘脑的体温调节中枢。当环境温度稍低于体温时,竖毛肌将毛竖起增加隔热层的厚度,皮肤毛细血管

关于热敏电阻的工作原理简介

  热敏电阻将长期处于不动作状态;当环境温度和电流处于c区时,热敏电阻的散热功率与发热功率接近,因而可能动作也可能不动作。热敏电阻在环境温度相同时,动作时间随着电流的增加而急剧缩短;热敏电阻在环境温度相对较高时具有更短的动作时间和较小的维持电流及动作电流。  1、ptc效应是一种材料具有ptc(po

NTC热敏电阻的相关介绍

  NTC(Negative Temperature CoeffiCient)是指随温度上升电阻呈指数关系减小、具有负温度系数的热敏电阻现象和材料.该材料是利用锰、铜、硅、钴、铁、镍、锌等两种或两种以上的金属氧化物进行充分混合、成型、烧结等工艺而成的半导体陶瓷,可制成具有负温度系数(NTC)的热敏电

热敏电阻的基本特性介绍

  热敏电阻的电阻-温度特性可近似地用下式表示:R=R0exp{B(1/T-1/T0)}:R:温度T(K)时的电阻值、Ro:温度T0、(K)时的电阻值、B:B值、*T(K)=t(º;C)+273.15。实际上,热敏电阻的B值并非是恒定的,其变化大小因材料构成而异,最大甚至可达5K/°C。因此

下临界温度的特点

当环境温度降到下临界温度以下时,动物增加耗氧量,提高代谢率,体内产热量增加,以维持恒定体温。 哺乳动物通过中枢神经系统调节体温。外界温度改变时,可刺激皮肤的感受器发生神经冲动传入中枢。血液温度的改变,可直接刺激下丘脑的体温调节中枢。当环境温度稍低于体温时,竖毛肌将毛竖起增加隔热层的厚度,皮肤毛细血管

上临界温度的定义

中文名称上临界温度英文名称upper critical temperature定  义当环境温度超过处于静止状态时,恒温动物通过向外界环境传递热量进行体温调节的能力时的温度。热中性温度区的上端。应用学科生态学(一级学科),生理生态学(二级学科)

下临界温度的概念

中文名下临界温度外文名lower critical temperature定    义是指热中性区的靠低温端(下端)特    点不同个体的下临界温度也不尽相同低于此温度动物增加耗氧量,提高代谢率等高于此温度动物需增加用于散热的能量

上临界温度的概念

中文名称上临界温度英文名称upper critical temperature定  义当环境温度超过处于静止状态时,恒温动物通过向外界环境传递热量进行体温调节的能力时的温度。热中性温度区的上端。应用学科生态学(一级学科),生理生态学(二级学科)

超导临界温度的测量

  实验内容本实验用升温法测量,所以整个装置需要浸泡在LN2(液氮)中。这样整个装置需要做到绝热,考虑导漏热的三种途径即气体漏热,固体漏热和辐射漏热。首先整个测量装置在作实验前必需在室温下抽致大约10-4 mmHg的真空,这样将真空室泡入液氮后真空室的真空可以提高一个数量级,基本上可以消除气体漏热。

高临界温度超导体临界温度的电阻测量法

实验目的  1.利用动态法测量高临界温度氧化物超导材料的电阻率随温度的变化关系。2.通过实验掌握利用液氮容器内的低温空间改变氧化物超导材料温度、测温及控温的原理 和方法。3.学习利用四端子法测量超导材料电阻和热电势的消除等基本实验方法以及实验结果的分 析与处理。 4.选用稳态法测量临界温度氧化物超导

热敏电阻的基本信息介绍

  热敏电阻是一种传感器电阻,其电阻值随着温度的变化而改变。按照温度系数不同分为正温度系数热敏电阻(PTC thermistor,即 Positive Temperature Coefficient thermistor)和负温度系数热敏电阻(NTC thermistor,即 Negative Te

合金热敏电阻材料的相关介绍

  合金热敏电阻材料亦称热敏电阻合金。这种合金具有较高的电阻率,并且电阻值随温度的变化较为敏感,是一种制造温敏传感器的良好材料。作为温敏传感器的热敏电阻合金性能要求如下:  (1)足够大的电阻率;  (2)相当高的电阻温度系数;  (3)具有接近于实验材料线膨胀系数;  (4)小的应变灵敏系数;  

热敏电阻技术术语相关介绍

  1. 居里点  “POSISTOR®”在达到某一温度前,电阻值是恒定的,一旦超过这一温度,电阻值也会急剧上升。这一电阻值的变化点成为“居里点 (也称为居里温度) ”,村田制作对其的定义是25℃时电阻值的2倍电阻值所处的温度。  2. 温度补偿  是由温度变化导致仪器、测量器等产生误差,经过特别设

金属热敏电阻材料相关介绍

  此类材料作为热电阻测温、限流器以及自动恒温加热元件均有较为广泛的应用。如铂电阻温度计、镍电阻温度计、铜电阻温度计等。其中铂侧温传感器在各种介质中(包括腐蚀性介质),表现出明显的高精度和高稳定的特征。但是,由于铂的稀缺和价格昂贵而使它们的广泛应用受到一定的限制。铜测温传感器较便宜,但在腐蚀性介质中

临界温度的研究与运用

①为探讨热湿环境下人体出汗临界温度,采用问卷调查和实验室测试的方法对重庆夏季热湿环境下人体13个部位的出汗情况进行研究。结果显示,人体的额头、胸口、背沟、腋窝和腰部5个部位出汗比较敏感,人体在热环境下出汗的临界温度在风速较低(0~0.1 m/s)时为33.0~34.5℃,风速较高(0.2~0.5 m

热敏电阻器的种类相关介绍

  热敏电阻器种类繁多,一般按阻值 温度系数可分为负 电阻温度系数(以下简称负温系数)和正电阻温度系数(以下简称正温系数)热敏电阻器;按其阻值随温度变化的大小可分为缓变和突变型;按其受热方式可分为直热式和旁热式;按其 工作温度范围可分为常温、高温和 超低温热敏电阻器;按其结构分类有棒状、圆片、方片、

下临界温度的研究与运用

①为探讨热湿环境下人体出汗临界温度,采用问卷调查和实验室测试的方法对重庆夏季热湿环境下人体13个部位的出汗情况进行研究。结果显示,人体的额头、胸口、背沟、腋窝和腰部5个部位出汗比较敏感,人体在热环境下出汗的临界温度在风速较低(0~0.1 m/s)时为33.0~34.5℃,风速较高(0.2~0.5 m

热敏电阻的分类

  热敏电阻是检测机器定影温度,当达到一定的温度是将会停止加温,保证机器正常运行。   热敏电阻的分类   热敏电阻包括正温度系数(PTC)和负温度系数(NTC)热敏电阻,以及临界温度热敏电阻(CTR).   热敏电阻的主要特点   ①灵敏度较高,其电阻温度系数要比金属大10~100倍以上,