Antpedia LOGO WIKI资讯

多光谱和高光谱成像技术透视丝路壁画

如何充分获取古代珍贵壁画内部信息,有效保护人类珍贵遗产?这一曾经困扰文保专家的难题,在非介入式成像技术广泛应用下迎刃而解。12月1日至3日,由英国诺丁汉特伦特大学发起,英国研究理事会支持,陕西历史博物馆、西安文保中心等单位协办,西北大学文化遗产学院主办的“成像科学与丝绸之路沿线壁画保护研究国际学术研讨会”在陕西省西安市召开。来自英国、法国、德国、俄罗斯及中国等从事文化遗产保护及科学研究领域的专家、学者约80人进行了研讨和交流。 在古代壁画以往的保护研究中,采用的主要手段包括湿法化学分析、仪器分析等,这些手段大多数都要从文物上取样,并且测试分析只是局部、点上的结果,无法给出保护所需的准确数据和壁画的全面信息。 最近10多年来,中外文保专家经过长期探索,将非介入式成像技术应用于文物保护和考古研究领域,其先进的科学理念和良好的技术手段获得广泛认同。 多光谱和高光谱成像系统属于专门为高分辨率远距离检测壁画而设计的技术......阅读全文

多光谱和高光谱成像技术透视丝路壁画

  如何充分获取古代珍贵壁画内部信息,有效保护人类珍贵遗产?这一曾经困扰文保专家的难题,在非介入式成像技术广泛应用下迎刃而解。12月1日至3日,由英国诺丁汉特伦特大学发起,英国研究理事会支持,陕西历史博物馆、西安文保中心等单位协办,西北大学文化遗产学院主办的“成像科学与丝绸之路沿线壁画保护

FluorCam多光谱荧光成像技术应用案例—多光谱荧光成像...

FluorCam多光谱荧光成像技术应用案例—多光谱荧光成像是什么1. 多光谱荧光的发现及特性二十世纪八九十年代,植物生理学家对植物活体荧光——主要是叶绿素荧光研究不断深入。激发叶绿素荧光主要是使用红光、蓝光或绿光等可见光。当科学家使用UV紫外光对植物叶片进行激发,发现植物产生了具备4个特征性波峰的荧

植物多光谱荧光成像系统多激发光、多光谱荧光成像技术

  多激发光、多光谱荧光成像技术:通过光学滤波器技术,仅使特定波长的光(激发光)到达样品以激发荧光,同时仅使特定波长的激发荧光到达检测器。不同的荧光发色团(如叶绿素或GFP绿色荧光蛋白等)对不同波长的激发光“敏感”并吸收后激发出不同波长的荧光,根据此原理可以选配2个或2个以上的激发光源、滤波轮及相应

FluorCam多光谱荧光成像技术介绍

FluorCam多光谱荧光成像系统作为FluorCam叶绿素荧光成像系统的最高级型号,是目前唯一有能力实现了一台仪器上同时完成叶绿素荧光、UV-MCF多光谱荧光、NDVI归一化植被指数以及GFP、YFP、BFP、RFP、CFP、DAPI等荧光蛋白与荧光染料的成像分析功能。同时也可以加装RGB真彩成像

植物多光谱荧光成像系统UV紫外光激发多光谱成像技术

  UV紫外光激发多光谱荧光成像技术:长波段UV紫外光(320nm-400nm)对植物叶片激发,可以产生具有4个特征性波峰的荧光光谱,4个波峰的波长为蓝光440nm(F440)、绿光520nm(F520)、红光690nm(F690)和远红外740nm(F740),其中F440和F520统称为BGF,

高光谱成像光谱仪

  高光谱成像光谱仪是一种用于农学领域的分析仪器,于2016年8月11日启用。  技术指标  技术参数:光谱范围1.0–2.5µm;空间像素384;F数F2.0,FOV16°;像素跨轨和延轨FOV,跨轨:0.73毫弧度,延轨:0.73毫弧度;光谱SAMPL5.45nm;噪声150e;峰值信噪比>11

高光谱成像仪的成像技术原理

  高光谱成像仪是新一代传感器。在20世纪80年代初正式开始研制。研制这类仪器的主要目的是想在获取大量地物目标窄波段连续光谱图像的同时,获得每个像元几乎连续的光谱数据,因而称为成像光谱仪。目前成像光谱仪主要应用于高光谱航空遥感。在航天遥感领域高光谱也开始应用。  高光谱成像技术  高光谱成像技术是基

高光谱成像仪的成像技术原理

  高光谱成像仪是新一代传感器。在20世纪80年代初正式开始研制。研制这类仪器的主要目的是想在获取大量地物目标窄波段连续光谱图像的同时,获得每个像元几乎连续的光谱数据,因而称为成像光谱仪。目前成像光谱仪主要应用于高光谱航空遥感。在航天遥感领域高光谱也开始应用。   高光谱成像技术   高光谱成像

模块式多光谱荧光成像技术方案

其主要特点如下:可选配从紫外光到远红光不同波段的光源板可进行植物对不同波段光源光合作用与生理生态响应实验叶绿素荧光成像分析:可运行Fv/Fm、Kautsky诱导效应、荧光淬灭分析、光响应曲线等protocols多光谱荧光成像分析:包括BG荧光(蓝色波段和绿色波段)成像和RFr荧光(红色荧光和远红荧光

高光谱图像成像原理

  光源相机(成像光谱仪+ccd)装备有图像采集卡的计算机是高光谱成像技术的硬件组成,其光谱的覆盖范围为200-400nm,400-1000nm,900-1700nm,1000-2500nm。其中光谱相机的主要组成部分为准直镜,光栅光谱仪,聚焦透镜以及面阵ccd。  其扫描过程是当ccd探测器在光学