多光谱和高光谱成像技术透视丝路壁画
如何充分获取古代珍贵壁画内部信息,有效保护人类珍贵遗产?这一曾经困扰文保专家的难题,在非介入式成像技术广泛应用下迎刃而解。12月1日至3日,由英国诺丁汉特伦特大学发起,英国研究理事会支持,陕西历史博物馆、西安文保中心等单位协办,西北大学文化遗产学院主办的“成像科学与丝绸之路沿线壁画保护研究国际学术研讨会”在陕西省西安市召开。来自英国、法国、德国、俄罗斯及中国等从事文化遗产保护及科学研究领域的专家、学者约80人进行了研讨和交流。 在古代壁画以往的保护研究中,采用的主要手段包括湿法化学分析、仪器分析等,这些手段大多数都要从文物上取样,并且测试分析只是局部、点上的结果,无法给出保护所需的准确数据和壁画的全面信息。 最近10多年来,中外文保专家经过长期探索,将非介入式成像技术应用于文物保护和考古研究领域,其先进的科学理念和良好的技术手段获得广泛认同。 多光谱和高光谱成像系统属于专门为高分辨率远距离检测壁画而设计的技术......阅读全文
多光谱和高光谱成像技术透视丝路壁画
如何充分获取古代珍贵壁画内部信息,有效保护人类珍贵遗产?这一曾经困扰文保专家的难题,在非介入式成像技术广泛应用下迎刃而解。12月1日至3日,由英国诺丁汉特伦特大学发起,英国研究理事会支持,陕西历史博物馆、西安文保中心等单位协办,西北大学文化遗产学院主办的“成像科学与丝绸之路沿线壁画保护
FluorCam多光谱荧光成像技术应用案例—多光谱荧光成像...
FluorCam多光谱荧光成像技术应用案例—多光谱荧光成像是什么1. 多光谱荧光的发现及特性二十世纪八九十年代,植物生理学家对植物活体荧光——主要是叶绿素荧光研究不断深入。激发叶绿素荧光主要是使用红光、蓝光或绿光等可见光。当科学家使用UV紫外光对植物叶片进行激发,发现植物产生了具备4个特征性波峰的荧
植物多光谱荧光成像系统多激发光、多光谱荧光成像技术
多激发光、多光谱荧光成像技术:通过光学滤波器技术,仅使特定波长的光(激发光)到达样品以激发荧光,同时仅使特定波长的激发荧光到达检测器。不同的荧光发色团(如叶绿素或GFP绿色荧光蛋白等)对不同波长的激发光“敏感”并吸收后激发出不同波长的荧光,根据此原理可以选配2个或2个以上的激发光源、滤波轮及相应
FluorCam多光谱荧光成像技术介绍
FluorCam多光谱荧光成像系统作为FluorCam叶绿素荧光成像系统的最高级型号,是目前唯一有能力实现了一台仪器上同时完成叶绿素荧光、UV-MCF多光谱荧光、NDVI归一化植被指数以及GFP、YFP、BFP、RFP、CFP、DAPI等荧光蛋白与荧光染料的成像分析功能。同时也可以加装RGB真彩成像
植物多光谱荧光成像系统UV紫外光激发多光谱成像技术
UV紫外光激发多光谱荧光成像技术:长波段UV紫外光(320nm-400nm)对植物叶片激发,可以产生具有4个特征性波峰的荧光光谱,4个波峰的波长为蓝光440nm(F440)、绿光520nm(F520)、红光690nm(F690)和远红外740nm(F740),其中F440和F520统称为BGF,
高光谱成像光谱仪
高光谱成像光谱仪是一种用于农学领域的分析仪器,于2016年8月11日启用。 技术指标 技术参数:光谱范围1.0–2.5µm;空间像素384;F数F2.0,FOV16°;像素跨轨和延轨FOV,跨轨:0.73毫弧度,延轨:0.73毫弧度;光谱SAMPL5.45nm;噪声150e;峰值信噪比>11
高光谱成像仪的成像技术原理
高光谱成像仪是新一代传感器。在20世纪80年代初正式开始研制。研制这类仪器的主要目的是想在获取大量地物目标窄波段连续光谱图像的同时,获得每个像元几乎连续的光谱数据,因而称为成像光谱仪。目前成像光谱仪主要应用于高光谱航空遥感。在航天遥感领域高光谱也开始应用。 高光谱成像技术 高光谱成像
高光谱成像仪的成像技术原理
高光谱成像仪是新一代传感器。在20世纪80年代初正式开始研制。研制这类仪器的主要目的是想在获取大量地物目标窄波段连续光谱图像的同时,获得每个像元几乎连续的光谱数据,因而称为成像光谱仪。目前成像光谱仪主要应用于高光谱航空遥感。在航天遥感领域高光谱也开始应用。 高光谱成像技术 高光谱成像技术是基
模块式多光谱荧光成像技术方案
其主要特点如下:可选配从紫外光到远红光不同波段的光源板可进行植物对不同波段光源光合作用与生理生态响应实验叶绿素荧光成像分析:可运行Fv/Fm、Kautsky诱导效应、荧光淬灭分析、光响应曲线等protocols多光谱荧光成像分析:包括BG荧光(蓝色波段和绿色波段)成像和RFr荧光(红色荧光和远红荧光
高光谱成像原理
高光谱成像是一种遥感技术,它可以通过获取地物的高光谱图像来实现物质识别、分类和定量分析等目标。高光谱成像技术的原理是基于地物物质吸收、反射和辐射特性的不同而实现的。高光谱成像技术的原理主要包括以下几个方面:一、光谱分辨率高光谱成像技术采用的是光谱分辨率比较高的成像仪器,它能够获取较高的空间分辨率和光
高光谱图像成像原理
光源相机(成像光谱仪+ccd)装备有图像采集卡的计算机是高光谱成像技术的硬件组成,其光谱的覆盖范围为200-400nm,400-1000nm,900-1700nm,1000-2500nm。其中光谱相机的主要组成部分为准直镜,光栅光谱仪,聚焦透镜以及面阵ccd。 其扫描过程是当ccd探测器在光学
高光谱成像光谱扫描的概念
高光谱成像是一种新兴的技术,可以在仪器的视场范围内同时快速测量和分析多个物体的光谱构成。这些成像系统用在多个工业和商业领域,比如高速在线检测和严密的质量控制工序。一般说来,在加工应用中捕捉精确的光谱信息,面临着机器视觉系统简单或单点光谱(single-point)测量的问题。这些仪器系统的成本很高,
应用高光谱成像技术监测物种入侵
Steven Jay1 – Research AssistantDr. Rick Lawrence1 – Associate ProfessorDr. Kevin Repasky2 – Associate ProfessorCharlie Keith2 – Research Assistant1De
高光谱成像技术用于海关检验检疫
在当前全世界新冠疫情持续蔓延的背景下,进口海鲜产品样本频繁检出新冠病毒的新闻引起了全社会对海关检验检疫的关注。检验检疫实际上是为了保证进出口商品、动植物及其运输设备的安全和卫生符合国家有关法律法规规定;防止次劣产品、有害商品、动植物以及危害人类和环境的病虫害和传染源的输入和输出,保障生产建设安全和人
比较分析多光谱和高光谱图像
重磅干货,第一时间送达当你阅读这篇文章时,你的眼睛会看到反射的能量。但计算机可以通过三个通道看到它:红色、绿色和蓝色。如果你是一条金鱼,你会看到不同的光。金鱼可以看到人眼看不见的红外辐射。大黄蜂可以看到紫外线。同样,人类无法用我们眼睛看到紫外线辐射。(UV-B伤害了我们)现在,想象一下,如果我们能够
高光谱技术高在哪
不同物质有它独属的“指纹光谱”,高光谱遥感技术可准确捕获这一重要信息,提高人眼及遥感观测能力。 看过纪录片《我在故宫修文物》的观众或许会对如下场景有印象:技术人员用一台仪器扫描古字画,扫描信息经过专业处理后,文物修复专家就能发现字画上肉眼看不见的信息,甚至还能分析出绘画技法和当时用的颜料。
成像光谱方法技术
一方面,高光谱分辨率的成像光谱遥感技术是对多光谱遥感技术的继承、发展和创新,因此,绝大部分多光谱遥感数据处理分析方法,仍然可用于高光谱数据;另一方面,成像光谱技术具有与多光谱技术不一样的技术特点,即高光谱分辨率、超多波段(波段<1000,通常为100~200个左右)和甚高光谱(Ultra Spect
SpectrAPP高光谱成像技术监测伤口愈合过程
伤口愈合过程是各种组织的再生共同作用的结果。创伤愈合的基本过程为:急性炎症期→细胞增生期→瘢痕形成期→表皮及其它组织再生。治疗不同原因(如创伤或慢性疾病)造成的伤口需要完全不同的临床护理方式,所以伤口的严重程度及愈合活力的评估是确定治疗方法的先决条件。 传统的活体组织检查
超微型高光谱成像光谱仪机
超微型高光谱成像光谱仪机是一种用于农学、水利工程领域的分析仪器,于2019年8月6日启用。 技术指标 1. 全反射同心光学设计,原始凸面全息光栅; 2. 光谱测量范围:400 nm~1000nm; 3. 数值孔径:F/2.5; 4. 光谱分辨率(FWHM):6nm; 5. 光谱通道数:270
高光谱遥感成像原理及特点
高光谱遥感(hyperspectral remote sensing)是高光谱分辨率遥感(highspectral resolution remote sensing)的简称,是在电磁波谱的可见光、近红外、中红外和热红外波段范围内,获取许多非常窄、光谱连续影像数据的技术。 高光谱遥感源于20世
超光谱成像技术
超光谱成像技术是在多光谱成像技术基础上发展起来的新技术。它是一种集光学、光谱学、精密机械、电子技术及计算机技术于一体的新型遥感技术,能获得空间维和光谱维的丰富信息,属于当前可见红外遥感器的前沿科学。由其物化的成像光谱仪,根据光谱分辨率(光学遥感器的性能指标之一,是指遥感器在接收目标辐射的光谱时,
成像光谱技术是什么?
1.成像光谱技术发展简述 光谱技术是指利用光与物质的相互作用研究分子结构及动态特性的学科,即通过获取光的发射、吸收与散射信息可获得与样品相关的化学信息,成像技术则是获取目标的影像信息,研究目标的空间特性信息。这两个独立的学科在各自的领域里已有数百年的发展历史,但是知道上个世纪六十年代,遥
机载高速成像光谱仪瞬间获得高光谱图像
机载高速成像光谱仪S185采用革命性的画幅式高光谱成像技术,能够以快照式的速度进行所有光谱通道同步成像;该技术融合了高光谱数据的精确性和快照成像的高速性,能够瞬间获得整个视场范围内精确的高光谱图像。 通过此款光谱仪可以简便地在1/1000秒内获得整个高光谱立方体数据,配套功能强大的测量及数
高光谱成像在国内的发展
上世纪80年代初、中期,在国家科技攻关项目和863计划的支持下,我国亦开展了高光谱成像技术的独立发展计划。我国高光谱仪的发展,经历了从多波段到成像光谱扫描,从光学机械扫描到面阵推扫的发展过程。 根据我国的使用情况先后开发出了满足海洋环境监测和森林探火的需求的以红外和紫外波段以及以中波和长波红外
高光谱成像与叶绿素荧光成像技术在生菜和玉米无损检...
高光谱成像与叶绿素荧光成像技术在生菜和玉米无损检测中的应用近年来,通过无损检测方法高精度地提高研究植物功能和结构的能力已成为植物育种和精准农业的主要目标,植物表型的新兴研究方法在揭示植物生长、产量、品质和抗各种胁迫的数量性状方面发挥着关键作用。除了全自动表型分析系统之外,其它一些成本可接受的高通量研
高光谱成像技术在根系表型分析中的应用
根系是植物的重要组成部分,植物吸收土壤中的水分与养分全依赖根系,所以根系的研究对于植物各学科来说都至关重要,但是根系分布在地面以下,而且是动态生长的,这就给根系的监测带来了很多困难。《Nature》杂志于2004年6月出版了一本专辑认为“人类对自己脚下土壤的了解远远不及对宇宙的了解”,更是佐证了地下
高光谱成像技术用于岩心数字化分析
具有高空间和光谱分辨率的SisuSCS/ROCK高光谱成像工作站,代表了世界领先的高通量、非损伤多样芯高光谱扫描分析技术,可对岩矿样芯、沉积物样芯或其它地矿样品进行批量快速检测,提供有极高分析价值及应用潜力的数字化数据。它在地矿勘查研究领域的出现,预示着从钻孔到沉积尺度的样芯、岩屑、土壤和其他地矿样
高光谱成像技术在地矿勘查研究中的应用
具有高空间和光谱分辨率的SisuSCS/ROCK高光谱成像工作站,代表了世界领先的高通量、非损伤多样芯高光谱扫描分析技术,可对岩矿样芯或其它地矿样品进行批量快速检测分析。它在地矿勘查研究领域的出现,预示着从钻孔到沉积尺度的样芯、岩屑、土壤和其他地矿样品的定量矿物学研究和绘图将发生一场技术革命。 案例
机载高光谱成像技术在溢油检测方面的应用
石油污染是指石油开采、运输、装卸、加工和使用过程中,由于泄漏和排放石油引起的污染,是世界上最普遍、最有害的环境污染之一。在石油生产、贮运、炼制加工及使用过程中,由于事故、不正常操作及检修等原因,都会有石油烃类的溢出和排放。石油烃类大量溢出,释放到水生或陆地环境中时,会对动植物群以及人类健康产生负面影
高光谱成像技术在食品检测中的应用
“民以食为天,食以安为先”,食品安全一直是全社会最为关注的问题之一。但由于食品种类多样,且从生产、加工、储藏到运输过程中可能接触到的污染源种类繁多,传统的检测方法受限于时效和人力,对许多保质期短的食品束手无策。因此,无论是对工厂、消费者还是质检人员来说,探索一种快速无损的食品检测方案具有重要现实意义