Antpedia LOGO WIKI资讯

理论物理所电弱对称破缺研究获进展

如何自然地实现电弱对称性破缺是当今粒子物理学的一个深刻而艰巨的问题。希格斯粒子的发现表明电弱对称性是通过希格斯标量场的非零真空期望值来破缺的,是理解电弱对称性的一个里程碑。然而,基本希格斯粒子对紫外能标(普朗克能标)非常敏感,导致电弱破缺能标不能自然稳定在246 GeV。为了屏蔽希格斯粒子对紫外能标的敏感性,需要引入新物理和新的对称性。在这些新物理模型中,用于消除标准模型粒子(规范玻色子以及顶夸克)对希格斯场的圈图修正的紫外发散项的这些新物理伴子都参与标准模型的相互作用,尤其是顶夸克的伴子参与色动力学相互作用,这使得大型强子对撞机的直接探测对这些伴子的质量给出很高的下限。由于希格斯的质量对顶夸克伴子的质量非常敏感,125 GeV的希格斯要求顶夸克的伴子必须很轻,这使得模型在符合实验限制下很难获得很轻的希格斯粒子,导致模型需要很大的精细调节。 中性自然性机制是解决以上问题的一个很有前景的方案。在这个机制中,希格斯场的二次发散......阅读全文

理论物理所电弱对称破缺研究获进展

  如何自然地实现电弱对称性破缺是当今粒子物理学的一个深刻而艰巨的问题。希格斯粒子的发现表明电弱对称性是通过希格斯标量场的非零真空期望值来破缺的,是理解电弱对称性的一个里程碑。然而,基本希格斯粒子对紫外能标(普朗克能标)非常敏感,导致电弱破缺能标不能自然稳定在246 GeV。为了屏蔽希格斯粒子对紫外

研究利用对称性破缺抑制卫星液滴

  关于液滴撞击到固体表面的回弹行为研究,在喷墨印刷、定向输运、自组装与能量收集等领域具有重要意义。表面浸润性图案化可以精准调控液滴的铺展和回缩行为,但该过程通常伴随卫星液滴的产生,对于喷墨打印等应用具有较大影响,如何精确控制卫星液滴的产生仍是挑战。  近年来,中国科学院化学研究所绿色印刷实验室宋延

研究利用对称性破缺抑制卫星液滴

  关于液滴撞击到固体表面的回弹行为研究,在喷墨印刷、定向输运、自组装与能量收集等领域具有重要意义。表面浸润性图案化可以精准调控液滴的铺展和回缩行为,但该过程通常伴随卫星液滴的产生,对于喷墨打印等应用具有较大影响,如何精确控制卫星液滴的产生仍是挑战。  近年来,中国科学院化学研究所绿色印刷实验室宋延

研究利用对称性破缺抑制卫星液滴

关于液滴撞击到固体表面的回弹行为研究,在喷墨印刷、定向输运、自组装与能量收集等领域具有重要意义。表面浸润性图案化可以精准调控液滴的铺展和回缩行为,但该过程通常伴随卫星液滴的产生,对于喷墨打印等应用具有较大影响,如何精确控制卫星液滴的产生仍是挑战。  近年来,中国科学院化学研究所绿色印刷实验室宋延林课

在单自旋体系中观测到宇称时间对称性破缺

  完结量子系统调控是人类知道和利用微观世界的重要途径,关于量子核算与量子传感至关重要。自旋作为重要的量子调控系统,如安在单自旋系统中完结非厄米哈密顿量的操控是量子调控领域中一个严重应战。   量子调控与量子信息要点专项项目负责人、中国科学技术大学杜江峰院士领衔的研讨团队面向这一应战,建立了在量子

学者发现自发对称性破缺并不总是能量和熵的妥协过程

  当气温降低到零度附近,水会结成冰。理论物理学家都说这很容易理解:水的结冰是一种自发对称性破缺现象,虽然水分子间的相互作用力的本质在结冰前后并没有丝毫改变,但水分子却突然不可连续移动了,平移连续对称性破缺了。自然界还存在许许多多其它自发对称性破缺现象,甚至连宇宙中的物质之所以有质量都是由于某种对称

利用对称性破缺衬底外延二维六方氮化硼单晶

  为开辟硅基电子器件之外的新途径,基于量子材料的新器件研究成为前沿热点。作为量子材料的重要分支,二维量子材料厚度只有原子级且量子效应显著,大面积、高质量的二维单晶制备是实现二维器件规模化应用的核心关键,然而晶格的非中心反演对称性给二维单晶生长带来了极大挑战。  在量子调控与量子信息重点专项资助下,

实验室内首次创造出对称性破缺并观察到拓扑瑕疵

  据美国每日科学网站8月12日报道,多国研究人员首次通过实验证明,可在实验室内以一种可控的方式制造出对称性破缺并观察到拓扑瑕疵。在一个控制得很好的系统内识别出这些“拓扑瑕疵”,将有助于科学家们研究量子相变、洞悉复杂系统的非平衡性动力系统。研究结果发表在最新出版的《自然·通讯》杂志上。   大约1

物理所预言立方对称性破缺下的新型拓扑绝缘体材料

  拓扑绝缘体已成为材料研究领域中的“明星”,吸引着众多科学家的目光,理论和实验两方面的研究工作进展都极为迅速。拓扑绝缘体是一种新奇的量子物态,具有绝缘体和导体双重特性,通过引入超导序和铁磁序,拓扑绝缘体可能在量子计算机和自旋电子学等领域有着潜在的广泛应用。然而,要实现这些应用,首先

金属表面有机分子对称性破缺诱导选择性功能化研究突破

  近年来,将第一性原理计算与扫描隧道显微镜(STM)和原子力显微镜(AFM)实验相结合已成为在原子、分子层次研究表面物理和化学过程的强有力手段,在实现小分子甚至单原子级别的操纵和表面化学反应的基础上,可以进一步研究原子尺度下的新奇物理化学性质。  表面合成是近年来备受关注的一种合成方法。利用金属单