Antpedia LOGO WIKI资讯

中国科学家NatureGenetics发表基因组研究新成果

红彤彤的现代番茄(西红柿)比起最初来自南美洲安第斯山脉区域、豌豆大小的野生祖先要大了近一百倍。为了追踪番茄育种的悠久历史,以及了解人类施加的选择如何改变了番茄的基因组,由来自中国农业科学院、华中农业大学等10多家国内外机构的研究人员组成的一个国际研究小组,对360个番茄品种,其中包括野生型和驯化物种进行了测序。研究结果发布在10月12日的《自然遗传学》(Nature Genetics)杂志上。 中国农业科学院的黄三文(Sanwen Huang)研究员、杜永臣(Yongchen Du)研究员、华中农业大学的叶志彪(Zhibiao Ye)教授和东北农业大学的李景富(Jingfu Li)教授是这篇论文的共同通讯作者。 佛罗里达大学园艺科学家Harry Klee(未参与该研究)说:“两年前我们只有一个基因组,而现在我们拥有了300多个!这项研究工作的真正重要之处在于,它为未来的番茄改良奠定了基础。我们现在可以找到与我们想获得的性......阅读全文

研究指出基因组学引领生物育种变革

  记者从近日举行的第五届国际农业基因组会议暨深圳国际食品谷研讨会上获悉,现代农业研究已迈入生物组学大数据时代,特别是基因组学及其衍生技术在生物育种中发挥着重要的引领作用。  基因组学是对生物体所有基因进行集体表征、定量研究及不同基因组比较研究的一门交叉生物学学科。基因组学主要研究基因组的结构、功能

基因组学出手助番茄复“味”

  以《更好吃的番茄》为题,1月27日的《科学》杂志用封面报道介绍了中美科学家关于番茄风味改良的化学和遗传学路线图研究成果,同期刊发了两国科学家合作的论文。与此同时,《自然》杂志也就此在线发表了亮点报道。   《科学》和《自然》杂志如此重视这小小番茄的原因在于,番茄既是一种非常受消费者欢迎的蔬菜,根

科学家揭示番茄紫色果实形成的分子机理

  近日,中国农科院蔬菜花卉研究所与华南农业大学开展合作研究,揭示了番茄紫色果实形成的分子遗传基础以及果实表皮中花青素生物合成的分子调控网络,为番茄高品质分子设计育种奠定了基础。  花青素是目前所发现的清除人体内自由基最有效的天然抗氧化剂,具有抗衰老、抗辐射、抗过敏、增进视力、改善睡眠、预防癌症、预

基因组学出手 寻找番茄旧时味

  近日,《科学》杂志以封面报道形式介绍了中美科学家关于番茄风味改良的化学和遗传学路线图研究成果,同期刊发了两国科学家合作的论文。与此同时,《自然》杂志也就此在线发表了亮点报道。   小小番茄之所以获得如此高的关注度,源于这种果实既是一种非常受消费者欢迎的蔬菜,又是植物生物学家的最爱之一,堪称植物遗

我科学家揭示番茄进化线路 为培育美味番茄提供新工具

  近日,中国农科院蔬菜花卉所研究员、深圳农业基因组所副所长黄三文领导的研究团队,通过对世界各地的360份番茄种质进行重测序分析,构建了完整的番茄遗传变异组图谱,为培育更加美味的番茄提供了新的工具。其最新研究成果于北京时间10月14日凌晨以长篇论文在线发表于《自然·遗传学》(Nature Genet

研究发现番茄茎秆变粗的关键基因

研究中检测SD的取材部位 华中农大供图  近日,《实验植物学杂志》(Journal of Experimental Botany)在线发表了华中农业大学教授叶志彪团队的最新研究成果。该研究鉴定了调控番茄茎秆发育的关键基因SD1,并从遗传和进化角度解析了番茄茎秆发育的遗传基础及调控机制。  论文通讯作

科学家“解码”西红柿青岛抢到成果使用权

  西红柿是广受大家喜爱的食物,但有谁知道它是怎么来的?是什么让它如此美味而又营养丰富呢?22日,记者从青岛农业大学了解到,经过长达8年的辛苦研究,青岛农业大学教授姜国勇参与的国际番茄基因组研究于近日最终完成。   今年5月31日,国际权威学术期刊《自然》以封面文章的形式首次公布了科学家对栽培番茄

一“图”在手 找回失落的番茄美味

  中国农科院近日宣布,由该院深圳农业基因组研究所黄三文研究员领衔的国际科研团队,首次利用多重组学大数据分析,揭示了“世界第一果”番茄在驯化和育种过程中营养和风味物质发生的变化,及其调控位点,为番茄果实风味、营养物质的遗传调控和全基因组设计育种提供了路线图。相关科研论文在国际知名生命科学期刊《细胞》

Nature子刊:番茄育种研究获重大突破

  番茄(Solanum lycopersicum)是世界上最有价值的水果作物之一,每年全球总价值超过500亿美元。我们经常吃番茄,它们也在我们的饮食中起着重要的作用,为我们提供了宝贵的维生素、矿物质和促进健康的植物化学物质。植物育种工作者一直致力于提供高产、更美味、更有营养和保质期更久的番茄品种,

现代分子育种研究进展

从过去到现在,世界各国的顶尖育种工程师们一直都在为未来的发展提供更好的产品而努力。祖辈们和上一代的园丁们精心挑选出最适合当地条件的作物种子并加以妥善保存,以期在来年或今后更长的时间内能获得好的收成。以番茄为例,在经过几十年的选择性育种后,各种地方品种的种子表现出了明显的特定区域特征。这些品种随着时间

新研究在番茄基因组库中添加近5000个基因

  现在,来自农业研究局(ARS)和Boyce Thompson研究所(BTI)的科学家们在刚刚发表的《Nature Genetics》一文中,重点讨论了这个问题。  位于纽约伊萨卡的ARS植物、土壤和营养研究实验室的分子生物学家James Giovannoni和BTI生物信息学科学家Zhangju

中国农业科学院Cell子刊发布番茄研究重要成果

  来自中国农业科学院、中科院遗传与发育生物学研究所的研究人员,通过绘制番茄果实发育过程中全基因组脱氧核糖核酸酶I(DNase I)超敏位点图谱,鉴别出了一些调控DNA元件。这一重要的研究成果发布在5月29日的《Molecular Plant》杂志上。  中国农业科学院的崔霞(Xia Cui)研究员

黄三文:用大数据精准培育“你的菜”

  在中国农业科学院深圳农业基因组研究所研究员黄三文办公室的一面白色玻璃隔断上,用马克笔写着一组杂交育种模式图。这是多年前,他写下的关于“优薯计划”的创想。  杂交育种是将父母本杂交,形成不同的遗传多样性,再通过对杂交后代的筛选,获得具有父母本优良性状、且不带有父母本中不良性状的新品种的育种方法。马

Cell:广泛靶向代谢组技术揭示番茄代谢育种与驯化历史

  继广泛靶向代谢组技术成果在NG、NC、PNAS发表后,2018年1月11日,《Cell》在线发表了题为“Rewiring of the fruit metabolome in tomato breeding”的研究论文。论文的通讯作者为迈维代谢首席科学家华中农业大学罗杰教授与中国农业科学院深圳农

常用的几种分子标记

RAPD利用 10 个碱基的一个或几个随机引物非定点地扩增 DNA 片段,一般一个引物可扩增 6-12 条 DNA 片段,利用凝胶电泳分开扩增的片段,从而进行基因多态性研究。 RAPD 是一种能快速进行基因多态性研究的技术,并且由于不涉及印迹杂交、放射性自显影等技术,因此简便易行。 SSR

科技驱动蔬菜品种换代升级

  李君明和专家们在黄瓜大棚   辣椒新品种   番茄新品种■本报记者 胡璇子 “秧子吊得这么整齐!”“管理得真好!”“通常来说

分子标记

内容:一、遗传标记 二、DNA分子标记 三、染色体原位杂交 四、DNA分子标记的应用 长期以来,植物育种中选择都是基于植株的表型性状进行的,当性状的遗传基础较为简单或即使较为复杂但表现加性基因遗传效应时,表型选择是有效的。但水稻的许多重要农艺性状为数量性状,如

科学时报:“神八”诱变育种猜想

  航天育种也称空间诱变育种、太空育种,是指利用返回式航天器和地面模拟空间环境装置,通过空间环境对植物发生诱变作用,致使种子产生变异,再通过严格的地面选育过程,获得优良的农作物品种。  今年,中国航天育种正迎来一个高潮。随着天宫一号升空,神舟八号携带的育种诱变装置将与其交会对接,由此

番茄驯化位点一个重复片段中和番茄育种障碍的隐秘变异

  第三代测序技术崛起了,伴随而来的三代变异检测技术也成为发现大片段结构变异的新宠儿,从2016年医学研究人员首次用 PacBio 测序技术找到致病性结构变异成功诊断罕见疾病,到2018年中信湘雅生殖与遗传专科医院的研究人员采用 Nanopore 测序技术精确诊断出一段长达 7Kb 的缺失突变并明确

网传圣女果是转基因会致癌 专家:常规育种可放心吃

  近日,海口市民王女士反映:“前几天我在微信朋友圈看到一篇文章说,圣女果是转基因食品,吃多了会致癌,吓得我现在都不吃了,这到底是不是真的?”对此,记者采访了相关专家,得到的答案是:海南所有圣女果都是通过常规育种培育出来的,不是转基因水果。   市民疑虑:圣女果到底是不是转基因水果?   每年二、三

RFLP技术在作物育种上的应用与展望(二)

四、RFLP在作物遗传育种上的应用   1、分子水平上选择目的性状  RFLP图本身对植物育种并没有直接的用处,只有当它与经典标记即原已定位的基因结合起来 才有用,当确定哪一个RFLP标记与目的性状表现协同分离,即目的基因与RFLP的连锁,使得 对期望基因重组型的选择容易进行,在分子水

新测序技术将加快植物抗病育种

  最近,英国剑桥大学塞恩斯伯里实验室(TSL)和基因组分析中心(TGAC)的一个科学家小组,开发出一种新方法,可加速植物抗病基因的分离。该研究小组也在龙葵(Solanum americanum,马铃薯的一个野生近缘种)中发现了一个全新的枯萎病抗性基因。  植物病原体(如晚疫病)能够快速进化以战胜宿

新测序技术将加快植物抗病育种

  最近,英国剑桥大学塞恩斯伯里实验室(TSL)和基因组分析中心(TGAC)的一个科学家小组,开发出一种新方法,可加速植物抗病基因的分离。该研究小组也在龙葵(Solanum americanum,马铃薯的一个野生近缘种)中发现了一个全新的枯萎病抗性基因。  植物病原体(如晚疫病)能够快速进化以战胜宿

我国实现农业科学重大基础研究的多项突破

  番茄为何失去了“小时候的味道”?水稻“自私基因”如何挑战经典的孟德尔遗传定律?高致病性禽流感病毒又是怎样快速进化的?由中国科学家进行的多项农业科学理论研究已获突破。20日,中国农科院党组书记张合成“揭秘”了这些重大科研新成果。  在南京举行的2019中国农业农村科技发展高峰论坛上,张合成集中介绍

协同创新驱动农业基因组学发展

   “作为生物技术领域最基础的学科,农业基因组学研究不仅需要国内外科学家同行的协同创新,更需要与生物技术产业发展需求无缝衔接,才能发挥出农业基因组学的最大潜能。基于这种认识,在国家农业科技创新联盟的框架下,建立农业基因组学的协同创新联盟就显得十分迫切。”中国农科院科技局局长梅旭荣表示。  7月24

科学家发表园艺作物育种中的基因编辑技术综述论文

  10月8日,Horticulture Research 在线发表了中国科学院分子植物科学卓越创新中心上海植物逆境生物学中心郎曌博研究组题为Genome Editing for Horticultural Crop Improvement 的综述论文。 该文系统总结了不同的基因编辑技术特别是CRI

神舟十一号成功发射!哪些生物实验跟着上天了?

  北京时间10月17日7时30分28秒,执行任务的神舟十一号载人飞船在酒泉卫星发射中心发射成功,并准确进入预定轨道,顺利将2名航天员送上太空!预计于北京时间19日凌晨,将与天宫二号完成交会对接!  此次任务中两位航天员将在轨工作33天。在这33天里他们都要做些啥?吃饭睡觉看风景吗?  这当然是不可

遗传发育所解析茉莉酸调控植物免疫的转录重编程机理

  茉莉酸是来源于不饱和脂肪酸的植物免疫激素,其生物合成途径和化学结构与高等动物中的免疫激素前列腺素有极高的类似性。在受到机械伤害、咀嚼式昆虫和死体营养型病原菌的侵害时,植物激活茉莉酸信号通路,启动并级联放大茉莉酸介导的转录重编程,从而产生有效的防御反应。但目前对茉莉酸激活植物免疫转录重编程的机理所

遗传发育所解析茉莉酸调控植物免疫的转录重编程机理

  茉莉酸是来源于不饱和脂肪酸的植物免疫激素,其生物合成途径和化学结构与高等动物中的免疫激素前列腺素有极高的类似性。在受到机械伤害、咀嚼式昆虫和死体营养型病原菌的侵害时,植物激活茉莉酸信号通路,启动并级联放大茉莉酸介导的转录重编程,从而产生有效的防御反应。但目前对茉莉酸激活植物免疫转录重编程的机理所

中国科学家Nature子刊公布新基因组草图

  来自合肥工业大学、四川大学、四川省自然资源科学研究院、北京百迈客生物科技有限公司等10多家机构的研究人员组成的一个研究小组成功绘制出了猕猴桃(Actinidia chinensis)的全基因组序列草图。相关成果发表在10月18日的《自然通讯》(Nature Communications)杂志