NatNeurosci:鉴别出大脑发育过程中的关键基因组调节子

近日,一项刊登在国际杂志Nature Neuroscience上题为“Differentiation of human pluripotent stem cells into neurons or cortical organoids requires transcriptional co-regulation by UTX and 53BP1”的研究报告中,来自圣犹大儿童研究医院的科学家们通过研究揭示了两种蛋白如何相互作用控制对人类大脑发育非常重要的数百个基因的表达。 研究者表示,蛋白质UTX和53BP1能相互连接从而激活一种程序,即基因会控制未成熟的多能干细胞发育成为功能性的神经元细胞和大脑结构。 我们都知道,蛋白质UTX是机体大脑发育过程中染色体的一种表观遗传调节子,但截止到目前为止,研究人员并不清楚参与该过程的其它蛋白质。表观遗传学能控制基因的开启或关闭,从而调节普通细胞转化成为特异性的细胞,比如神经元细胞等。基......阅读全文

Cell:大脑发育的关键调节子

  在哺乳动物的进化和发育过程中,大脑皮层都发生了显著的增加,包括正切方向和辐射状的扩展(tangential and radial expansion)。此时,大脑皮层的组织在脑部进行折叠,使皮层的神经元数量和表面面积最大化。现在,科学家们发现了这一重要过程中的一个关键的调节子,相关研究发表在

Nat-Neurosci:鉴别出大脑发育过程中的关键基因组调节子

  近日,一项刊登在国际杂志Nature Neuroscience上题为“Differentiation of human pluripotent stem cells into neurons or cortical organoids requires transcriptional co-r

关于调节子的分类介绍

  一些核糖核酸调节子通过与其他RNA简单的反义相互作用发挥功能。依据基因组来源,内源的反义RNA大致可以分为两类:  ①反式反义RNA(trans-antisenseRNA),该反义RNA转录自推测的靶特定位点;  ②顺式反义RNA(cis-antisenseRNA),该反义RNA由靶RNA同一基

简述RNA调节子的功能

  现有的证据表明,在所有的生物体当中包括ncRNA在内的分子调控过程是非常普遍的。RNA如此适合这一目的的原因之一是在单细胞水平和分子系统的宏观进化上是高效的。与蛋白质比较而言,RNA分子合成和降解所需的能量更少。而且RNA分子较蛋白质更不稳定也是一个优点,因为用作瞬时信号的调节分子应当快速降解。

Science:揭示大脑回路的表观基因组成

  表观基因组学的变化,包括DNA的化学修饰,可以作为基因组的一层额外信息。表观基因组学在学习和记忆及年龄相关的认知度方面扮演着重要的角色。新的研究发现DNA甲基化,一种特殊的表观基因组学修饰的形式。从出生到成年,DNA甲基化形式在大脑细胞中是动态变化的。从而帮助理解大脑细胞中基因组学的信息是如何控

分子遗传学词汇调节子

调节子的功能,在所有的生物体当中包括ncRNA在内的分子调控过程是非常普遍的,RNA如此适合这一目的的原因之一是在单细胞水平和分子系统的宏观进化上是高效的。与蛋白质比较而言,RNA分子合成和降解所需的能量更少。而且RNA分子较蛋白质更不稳定也是一个优点,因为用作瞬时信号的调节分子应当快速降解。在许多

Science:毒品成瘾的关键调节子

  科学家们发现,在C57BL/6(Black 6)小鼠的两个亚系之间,存在单核苷酸多态性SNP ,而这一差异会影响小鼠对可卡因和甲基苯丙胺(俗称冰毒)的反应。研究指出,Cyfip2是可卡因应答的重要调控子。这一成果发表在十二月十九日的Science杂志上。   Texas大学和Howard

核糖核酸调节子的分类

一些核糖核酸调节子通过与其他RNA简单的反义相互作用发挥功能。依据基因组来源,内源的反义RNA大致可以分为两类:①反式反义RNA(trans-antisenseRNA),该反义RNA转录自推测的靶特定位点;②顺式反义RNA(cis-antisenseRNA),该反义RNA由靶RNA同一基因组区的互补

Nature子刊:科学家解析钙离子通道的调控

  Johns Hopkins大学的科学家们,解析了机体中游离钙(存在于骨以外的钙)的调控机制,这一研究可以帮助人们开发新药物,治疗包括帕金森症在内的多种神经学疾病。文章发表在本周的Nature Chemical Biology杂志上。   游离钙离子携带的电信号“对于机体功能非常重要,”

关于调节子的基本信息介绍

  调节子的功能,在所有的生物体当中包括ncRNA在内的分子调控过程是非常普遍的,RNA如此适合这一目的的原因之一是在单细胞水平和分子系统的宏观进化上是高效的。与蛋白质比较而言,RNA分子合成和降解所需的能量更少。而且RNA分子较蛋白质更不稳定也是一个优点,因为用作瞬时信号的调节分子应当快速降解。在

Science:科学家发现负责记忆保存的关键基因

  近日,刊登在国际杂志Science上的一项研究报告中,来自首尔大学等处的科学家在影响小鼠记忆保存的的大脑海马体中发现了三种类型的抑制性调节子,该研究阐明了负向基因调控在大脑记忆和学习中的重要性。  一直以来,科学家们就知道,某些基因的表达和翻译都会参与记忆的形成,然而他们却并不知道具体是哪一个基

Nat-Neurosci:科学家发现精神分裂症疗法的新靶点

  近日,一篇发表于国际杂志Nature Neuroscience上的研究论文中,来自麻省理工学院的研究人员通过研究鉴别出了一种主要的遗传调节子,其或可帮助解释引发精神分裂症的错误大脑功能;相关研究或可帮助开发治疗因突触异常而引发的精神分裂症和其它疾病的新型策略提供一定的帮助。  信使RNA(mRN

Science:缺乏母爱竟会改变基因组-影响大脑神经元

今日,《科学》杂志上刊发了一项重量级研究:来自Salk研究所的团队发现,缺乏母爱的小鼠其基因组会出现明显改变,且这种改变集中在影响情感和记忆的海马体中。这一发现支持了“童年环境会影响人类大脑发育”的观点。什么?出生后的动物还会出现基因组的明显改变?Salk研究所的过渡所长,该研究的通讯作者Rusty

调Q的定义

通过改变光学谐振腔的Q值,把储存在激活媒质中的能量瞬时释放出来,以获得一定脉冲宽度(几个到几十个纳秒)的激光强辐射的方法。

调Q的定义

通过改变光学谐振腔的Q值,把储存在激活媒质中的能量瞬时释放出来,以获得一定脉冲宽度(几个到几十个纳秒)的激光强辐射的方法。

qpcr条件怎么调

qpcr条件需要根据引物和目的基因的长度进行调整,根据qpcr引物设计原则,引物的Tm值在60℃左右,因此这一步的温度一般可设为60℃。 时间还需根据仪器使用要求进行设置,如ABI StepOne、Bio-Rad CFX96、Roche LightCycler 480至少需要设置30s,而ABI 7

调Q技术种类

调Q技术分为:电光调Q、声光调Q、染料调Q、色心晶体调Q、转镜调Q。其中以电光调Q、声光调Q、染料调Q最为常用。电光调Q、声光调Q总称主动调Q,染料调Q称为被动调Q。电光调Q利用晶体的电光效应,在晶体上加一阶跃式电压,调节腔内光子的反射损耗。第一阶段是在晶体上加电压λ/4。偏振光通过KDP晶体时分解

sem如何调清晰

关键是聚焦,高倍聚焦,低倍成像。再就是调节对比度亮度得到一幅清晰的图像。 如果比较了解电镜的话,还要调节像散,对中等等之类的。SEM想清楚这个要自己多试条件,不同的电压、扫描速度、工作距离都是会影响图片清晰度的,当然条件确认的情况下,就是要看你的技术咯,电子束对中,像散调节,wobble,最后就是f

七篇《Science》公布:迄今为止最全面的大脑基因组分析

  最新研究显示,科学家们通过迄今为止对人类大脑进行的最全面的基因组分析,揭示了大脑发育过程中所经历的变化,出现的个体差异,以及自闭症谱系障碍和精神分裂症等神经精神疾病的根源。  这项庞大的研究完成了近2000个大脑的分析,解析了大脑发育和功能的复杂机制,由多个机构完成,相关成果公布在12月14日S

正调物的定义

中文名称正调物英文名称positive regulator定  义对某个基因有正调节作用的分子,包括正调节蛋白以及固醇等小分子。应用学科生物化学与分子生物学(一级学科),总论(二级学科)

什么是抗原调变?

抗原调变(antigenic modulation)是指由于宿主免疫系统攻击肿瘤细胞,致使表面肿瘤抗原表位减少或丢失,从而逃逸免疫系统识别和杀伤的现象。

抗原调变的概念

抗原调变(antigenic modulation)是指由于宿主免疫系统攻击肿瘤细胞,致使表面肿瘤抗原表位减少或丢失,从而逃逸免疫系统识别和杀伤的现象。

原子吸收狭缝怎么调

在软件中直接设置由电动机构直接调节 不需要手动调节了各个不同厂家的软件可能有所不同 有些在参数设置里面 有些在方法编辑里面原子吸收需要设定并不复杂 应该比较好找到

容重器怎么调时间

在电子容重器的实际操作过程中,还是有许多用户对该仪器不够了解,甚至不知道该如何调试,以至于不能够将仪器的作用发挥出来。因此,今天就将电子容重器的调试方法与大家做个分享:1、将GHCS-1000电子容重器电源插头接入电源;2、电子秤校准:接电源开关,接通电源,此时电子秤自动进行自检状态。待显示器显示“

调Q技术的应用

目前调Q激光器已拥有众多波长,包括266、355、523.5、526.5、532、656.5、660、1047、1053、1064、1313、1319nm,由于调Q激光器能获得高峰值功率,窄脉宽而被广泛应用于工业加工,科研领域。

钙调蛋白的定义

  钙调蛋白(calmodulin, CaM)又称钙调素,是一种普遍存在于各种真核细胞内,并能与钙离子结合的多功能蛋白质。   钙调蛋白参与细胞内多种信号转导途径,并在Ca2+依赖性信号转导途径中起到关键作用,是动态Ca2+传感器,能够响应广泛的Ca2+浓度,并向下游传递信号。  钙调蛋白分子是由

原子吸收狭缝怎么调

在软件中直接设置由电动机构直接调节 不需要手动调节了各个不同厂家的软件可能有所不同 有些在参数设置里面 有些在方法编辑里面原子吸收需要设定并不复杂 应该比较好找到

调Q的技术种类

调Q技术分为:电光调Q、声光调Q、染料调Q、色心晶体调Q、转镜调Q。其中以电光调Q、声光调Q、染料调Q最为常用。电光调Q、声光调Q总称主动调Q,染料调Q称为被动调Q。电光调Q利用晶体的电光效应,在晶体上加一阶跃式电压,调节腔内光子的反射损耗。第一阶段是在晶体上加电压λ/4。偏振光通过KDP晶体时分解

黄芪调血压妙在剂量

  黄芪味甘,性微温,归脾、肺二经,有补气升阳、益气固表、托毒生肌、利水消肿之功,广泛用于脾肺气虚、表虚卫气不固、外科疮疡之气血不足证、各种疾病所致水肿以及粉丝、消渴等疾,运用得当,其功立见。余师石恩骏通过多年观察,认识到本品治疗高血压、低血压病取效之关键在于剂量,若能灵活掌握,果断施治,多收良

钙调蛋白基本介绍

  Ebashi 等在 1965 年报道了细胞中存在介导钙信号的钙结合蛋白,随后 Cheung 将这一类能结合钙离子的磷酸二酯酶(PDE)激活蛋白命名为“钙调蛋白”(calmodulin,简称 CaM)。 [4]  钙调蛋白是一种广泛存在于真核细胞中,进化上高度保守的一类钙离子受体蛋白。钙调蛋白是由