Antpedia LOGO WIKI资讯

生物物理所基因密码子扩展模拟光合作用研究获进展

电子转移(ET)是生物体中最基本的生化过程,例如光合系统和呼吸系统中的氧化还原反应均为电子传递过程。研究者一直在寻求利用生物元件实现对复杂系统中电子转移及光致电荷分离进行高效可控的模拟,而如何基因编码有效的电子受体是合成生物学中的主要瓶颈。已知自然界中的天然氨基酸均为电子供体,而目前基因编码的用于研究电子传递过程的非天然氨基酸也均为电子供体。虽然也有金属螯合能力的非天然氨基酸可作为电子受体,但由于铜离子不能进入蛋白质内部、有毒性及环境敏感等原因而无法被推广。 中国科学院生物物理研究所王江云研究组将氟代硝基苯丙氨酸和间硝基苯丙氨酸两种电子受体非天然氨基酸通过基因密码子扩展手段定点插入到绿色荧光蛋白(GFP),首次实现了利用电子受体非天然氨基酸研究绿色荧光蛋白中的快速光致电子转移过程,并与中国科学院化学研究所夏安东研究组合作,利用飞秒瞬态光谱测量到电子转移发生在皮秒范围(接近光系统I中最快的电子转移步骤)。利用晶体结构研究测量......阅读全文

生物物理所基因密码子扩展模拟光合作用研究获进展

  电子转移(ET)是生物体中最基本的生化过程,例如光合系统和呼吸系统中的氧化还原反应均为电子传递过程。研究者一直在寻求利用生物元件实现对复杂系统中电子转移及光致电荷分离进行高效可控的模拟,而如何基因编码有效的电子受体是合成生物学中的主要瓶颈。已知自然界中的天然氨基酸均为电子供体,而目前基因编码的用

电子酸碱理论的受体和给体

凡是能够接受外来电子对的分子、离子或原子团称为路易斯酸(Lewis acid),即电子对接受体,简称受体;凡是能够给出电子对的分子、离子或原子团称为路易斯碱(Lewis base),即电子对给予体,简称给体。

研究实现低毒性量子点电子转移与能量转移光催化

近日,中科院大连化学物理研究所研究员吴凯丰团队在量子点电荷/能量转移与光催化研究中取得新进展,实现了一类低毒性量子点作为强还原剂和三线态敏化剂的有机光催化应用。相关研究成果发表在《德国应用化学》上。 光诱导电荷/能量转移被广泛应用于各类有机催化反应。常见的光敏剂主要是吸收可见光的有机分子或过渡金

Cell子刊:癌转移中开门揖盗的受体

  癌症所导致的死亡大多并不是原发性肿瘤引起的,而是癌症转移引起的。Zurich大学的生理学家和神经病理学家发现了癌转移发生的根源,并首次揭示了转移性肠癌细胞离开血流进入器官的通路。文章发表在Cancer cell杂志上。该研究有望帮助开发癌症治疗的新途径。   世界上每年有超过七百万人死于癌

植物组织中氨基转移反应及氨基酸的层析分离

一、目的 转氨基作用是植物  界普遍存在的一种生化反应,它使蛋白质、氨基酸代谢 与碳水化合物、脂肪等代谢沟通起来,在一定程度上起平衡蛋白质、脂肪等代 谢的作用。研究植物体转氨基作用,可以使我们了解植物体不同发育阶段代谢 动态的一个侧面,从而探索控制其代谢的途径。 二、原理 通过转氨基作用,α—氨基酸

植物组织中氨基转移反应及氨基酸的层析分离

一、目的转氨基作用是植物界普遍存在的一种生化反应,它使蛋白质、氨基酸代谢与碳水化合物、脂肪等代谢沟通起来,在一定程度上起平衡蛋白质、脂肪等代谢的作用。研究植物体转氨基作用,可以使我们了解植物体不同发育阶段代谢动态的一个侧面,从而探索控制其代谢的途径。二、原理通过转氨基作用,α—氨基酸上的氨基可能转移

大连化物所实现低毒性量子点电子转移与能量转移光催化

  近日,中科院大连化物所光电材料动力学研究组(1121组)吴凯丰研究员团队在量子点电荷/能量转移与光催化研究中取得新进展,实现了一类低毒性量子点作为强还原剂和三线态敏化剂的有机光催化应用。  光诱导电荷/能量转移被广泛应用于各类有机催化反应。常见的光敏剂主要是吸收可见光的有机分子或过渡金属(例如钌

光致电子转移过程的可视化

  理解光致电子转移的机理对于提高太阳能材料和光敏系统的光电转化效率有着重要的意义。近日,西南大学发光与实时分析化学教育部重点实验室的高鹏飞博士、黄承志教授团队在ACS Nano 杂志上发表论文,报道了通过暗场散射成像技术在单个银纳米颗粒上实现了光致电子转移过程可视化,为探索电子转移化学反应机理提供

转移性乳腺癌中雌激素受体编码基因或变异

  据《自然—遗传学》上的两项独立研究显示,在某些转移性乳腺癌病例中,负责编码雌激素受体的基因会发生变异。这意味着雌激素受体对抗药物或对某些转移性乳腺癌病例具有疗效。   Sarat Chandarlapaty等人选取了36个对激素疗法产生抗性的转移性乳腺癌肿瘤,对其中的230种基因进行测序,

乳酸脱氢酶根据天然电子受体的不同分类

  可以将NAD-非依赖型乳酸脱氢酶分为三类。第一类为膜蛋白,利用膜醌类作为外部的电子受体;第二类直接利用O2作为电子受体,根据氧化终产物的不同,又将其细分为乳酸氧化酶(Lactate oxidase,LOX)和乳酸单氧酶(Lactate monooxygenases,LMO),其中前者产生丙酮酸和