芯片应用如何助力北京高端制造业产业优化?

12月2日,由北京市科学技术协会主办,中国科学报社、北京科技咨询中心承办,科技成果转化暨科技产业智库(筹)、国科创新智库(北京)科技咨询有限公司、北京国科率先创新科技有限公司协办的“芯技术·芯融合——芯片应用助力北京高端制造业产业优化”决策咨询沙龙在北京召开。来自政府、科研院所、企业的50多位代表参加了本次沙龙。 与会专家认为,国产芯片的发展一定要实现关键核心技术国产化,这不仅要加大研发自主创新,还要做好市场化引导,更需要集合产业势能,各方共同协作,才能真正拥有自主核心技术芯片的竞争力,才能领跑全球。芯片是国家重要的科技战略 集成电路发展是国家的战略层面的大事,微电子芯片产业是支持社会经济发展的战略性、基础性和先导性产业,也是北京市重点发展的高精尖产业之一。北京市科学技术协会党组成员、副主席孙晓峰在致辞中表示:“芯片是国家重要的科技战略,也是首都高精尖产业发展的重要方面。” 芯片具有高度集成、......阅读全文

原位芯片的应用

    原位芯片作为基础材料,它就像一个支点,可撬动多领域的应用,且与我们生活息息相关。比如,在原位芯片的“助攻”下,电子显微镜观测能力将大幅度提高,能全程高清拍摄每个原子的变化和运动轨迹,借由这项技术,可以研究汽车尾气、废水等。由于原位芯片高通量、少样本量的特性,可满足超快速体外诊断(如用尿液检测

蛋白芯片制作与应用(4)-液态芯片

液态芯片原理编码微球:分别用不同配比的两种荧光染料将直径5.6μm的聚苯乙烯微球(Beads)染成不同的荧光色,从而获得多达100种经荧光编码的微球。 交联探针、抗体或抗原:把针对不同检测物的核酸探针、抗体或抗原以共价方式结合到特定荧光编码的微球上。 检测反应:先把针对不同检测物的、用不同荧光色编码

microRNA-芯片与表达谱芯片的联合应用

microRNA 芯片与表达谱芯片的联合应用——探究胃癌细胞株的原发性耐药的分子机制药物耐受是肿瘤治疗领域的一大难题,一般分为两种类型:其一为原发性耐药,即先前未经治疗的肿瘤细胞天生就对某种药物不敏感;其二是获得性耐药,指经过治疗的肿瘤细胞再次接受该药物治疗时变得不敏感。 目前, 国际上许多科研

基因芯片的应用

DNA芯片技术就是指在固相支持物上原位合成寡核苷酸或者直接将大量的DNA探针以显微打印的方式有序地固化于支持物表面,然后与标记的样品杂交,通过对杂交信号的检测分析,即可获得样品的遗传信息。是伴随“人类基因组计划”的研究进展而快速发展起来的一门高新技术。通俗地说,基因芯片是通过微加工技术,将数以万计、

微阵列芯片的应用

微阵列芯片是指采用光导原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等生物样品有序地固化于支持物(如玻片、尼龙膜等载体)的表面,组成密集二维分子排列,然后与已标记的待测生物样品中靶分子反应,通过特定的仪器,比如激光扫描仪对反应信号的强度进行快速、并行、高效地检测分

微阵列芯片的应用

微阵列芯片是指采用光导原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等生物样品有序地固化于支持物(如玻片、尼龙膜等载体)的表面,组成密集二维分子排列,然后与已标记的待测生物样品中靶分子反应,通过特定的仪器,比如激光扫描仪对反应信号的强度进行快速、并行、高效地检测分

基因芯片的应用

1998 年底美国科学促进会将基因芯片技术列为 1998 年度自然科学领域十大进展之一,足见其在科学史上的意义。现在,基因芯片这一时代的宠儿已被应用到生物科学众多的领域之中。它以其可同时、快速、准确地分析数以千计基因组信息的本领而显示出了巨大的威力。这些应用主要包括基因表达检测、突变检测、基因组多态

微流控芯片应用

微流控芯片技术在水环境污染分析中的研究尚处于起步阶段,因此多集中于优先污染物的相关报道,主要包括重金属、营养元素、有机污染物和微生物等。  1、用肝水体中重金属检测的微流控芯片系统  随着工农业的发展, 越来越多的重金属如汞、铬、铅、铜、镍、钒等被排放入水体,不仅会对水生动植物产生毒害作用,还能通过

基因芯片的应用

  1998 年底 美国科学促进会将基因芯片技术列为 1998 年度自然科学领域十大进展之一,足见其在科学史上的意义。现在,基因芯片这一时代的宠儿已被应用到 生物科学众多的领域之中。它以其可同时、快速、准确地分析数以千计 基因组信息的本领而显示出了巨大的威力。这些应用主要包括 基因表达检测、突变检测

蛋白芯片制作与应用(1)-液态芯片原理

液态芯片原理编码微球:分别用不同配比的两种荧光染料将直径5.6μm的聚苯乙烯微球(Beads)染成不同的荧光色,从而获得多达100种经荧光编码的微球。 交联探针、抗体或抗原:把针对不同检测物的核酸探针、抗体或抗原以共价方式结合到特定荧光编码的微球上。 检测反应:先把针对不同检测物的、用不同荧光色编码

生物芯片入门(一):生物芯片及应用简介

生物芯片(biochip)是指采用光导原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等等生物样品有序地固化于支持物(如玻片、硅片、聚丙烯酰胺凝胶、尼龙膜等载体)的表面,组成密集二维分子排列,然后与已标记的待测生物样品中靶分子杂交,通过特定的仪器比如激光共聚焦扫描或

DNA-芯片的制备与应用

DNA 芯片的制备与应用DNA 芯片的出现,是生物技术领域的一次革命,虽然现在无法预知它带给我们的变化。但由于它在人类基因组计划,基因表达和药物筛选等方面的潜在用途。目前已有越来越多的公司和研究机构加入到DNA芯片的设计与开发。DNA芯片技术集成了集成电路制造,照相平板印刷,DNA合成,探针的荧光标

Agilent-eArray定制芯片应用案例

在生命科学的不同研究中,需要观察的基因并不完全相同,因此许多研究者往往需要针对自己感兴趣的一些基因进行表达分析。定制芯片服务的目的,就在于满足不同研究者的需要。另外,有些物种尚没有商品化的基因芯片可以提供,也需要通过定制芯片来制备。   上海伯豪生物技术有限公司/生物芯片上海国家工程研究中心(SBC

生物芯片入门(五):应用

基因芯片技术及其研究现状和应用前景生物芯片技术是随着“人类基因组计划”(human genome project,HGP)的进展而发展起来的,它是90年代中期以来影响最深远的重大科技进展之一,它融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具

微流控芯片技术应用

按照技术原理,可暂将分子诊断技术大致划分为PCR技术、分子杂交、基因测序、核酸质谱、生物芯片(包括基因芯片、微流控芯片)5大类。今天就为大家分析介绍微流控技术的相关情况。在本文之前,小编已经陆续整理了一些相关文章,包括对分子诊断技术概况的介绍、NGS技术在病原微生物检测中的应用、数字PCR技术的优势

生物芯片应用领域

最大用途在于疾病检测基因表达水平的检测 用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。谢纳(M.Schena) 等用人外周血淋巴细胞的cDNA文库构建一个代表1046个基因的cDNA微阵列,来检测体外培养的T细胞对热休克反应后不同基因表达的差异,发现有5个基因在处理后存在

组织芯片的概念和应用

组织芯片(tissue chip),也称组织微阵列(tissue microarrays),是生物芯片技术的一个重要分支,是将许多不同个体组织标本以规则阵列方式排布于同一载体(使用载玻片最多)上,进行同一指标的原位组织学研究。该技术自1998年问世以来,以其大规模、高通量、标准化等优点得到大范围的推

微流体芯片技术的应用

微流控技术问世至今有近30年历史,但其发展迅猛,被称为下一代医疗诊断“颠覆性技术”。通过利用微流体芯片进行的研究一直都在不断进行中,近日一项关于乳腺癌细胞转移相关的研究就用到该技术。来自密西根大学安娜堡分校的研究人员利用新开发的高通量微流体芯片,发现了转移性乳腺癌细胞的重要特性之一 — 吞噬间充质干

生物芯片应用领域

  1、基因表达水平的检测  用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。Schena等采用拟南芥基因组内共45个基因的cDNA微阵列(其中14个为完全序列,31个为EST),检测该植物的根、叶组织内这些基因的表达水平,用不同颜色的荧光素标记逆转录产物后分别与该微阵列杂

微流控芯片的应用

     微流控芯片技术是把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本单元集成到一块微米尺度的芯片上,自动完成分析全过程。微流控芯片应用十分广泛:     1、在核酸研究中的应用核酸研究的技术如DNA萃取/纯化、PCR扩增、分子杂交、电泳分离和检测等都可以在微流控芯片上实现。如今已有

组织芯片的特点和应用

组织芯片(tissue chip),也称组织微阵列(tissue microarrays),是生物芯片技术的一个重要分支,是将许多不同个体组织标本以规则阵列方式排布于同一载体(使用载玻片最多)上,进行同一指标的原位组织学研究。该技术自1998年问世以来,以其大规模、高通量、标准化等优点得到大范围的推

组织芯片特点及其应用前景

组织芯片(tissue chip),也称组织微阵列(tissue microarrays),是将数十个甚至上千个不同个体组织标本以规则阵列方式排布于同一固相载体上,进行同一指标的原位组织学研究。为医学分子生物学提供了一种高通量、大样本以及快速的分子水平的分析工具。 组织芯片是生物芯片技术的一个重要分

生物芯片技术的应用

生物芯片(biochip)是指采用光导原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等等生物样品有序地固化于支持物(如玻片、硅片、聚丙烯酰胺凝胶、尼龙膜等载体)的表面,组成密集二维分子排列,然后与已标记的待测生物样品中靶分子杂交,通过特定的仪器比如激光共聚焦扫描或

生物芯片技术应用意义

对来源于不同个体(正常人与患者)、不同组织、不同细胞周期、不同发育阶段、不同分化阶段、不同病变、不同刺激(包括不同诱导、不同治疗阶段)下的细胞内的mRNA或逆转录后产生的cDNA与表达谱基因芯片进行杂交,可以对这些基因表达的个体特异性、组织特异性、发育阶段特异性、分化阶段特异性、病变特异性、刺激特

生物芯片的定义和应用

生物芯片,又称蛋白芯片或基因芯片,它们起源于DNA杂交探针技术与半导体工业技术相结合的结晶。该技术系指将大量探针分子固定于支持物上后与带荧光标记的DNA或其他样品分子(例如蛋白,因子或小分子)进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息。

LncRNA芯片应用于胃癌研究

上海交通大学附属仁济医院房静远教授主要从事消化系统肿瘤发生的分子机制、早期诊断和分子治疗等相关研究。近期,该课题组应用美国Arraystar公司的lncRNA芯片分析了胃癌组织的lncRNAs表达情况,筛选到可预测胃癌发生的分子标志物GClnc1,并且阐明了GClnc1在胃癌的发生和发展中是如何发挥

DNA芯片技术的原理与应用

DNA芯片技术就是指在固相支持物上原位合成寡核苷酸或者直接将大量的DNA探针以显微打印的方式有序地固化于支持物表面,然后与标记的样品杂交,通过对杂交信号的检测分析,即可获得样品的遗传信息。是伴随“人类基因组计划”的研究进展而快速发展起来的一门高新技术。通俗地说,基因芯片是通过微加工技术,将数以万计、

基因芯片的应用与展望

一、基因芯片产生背景人类基因组计划(HGP)是人类为了认识自己而进行的一项最伟大和最具影响的研究计划。 人类基因组测序的“工作草图”即将向全球公布,预计在2003年完成全序列分析。此外,还测定了80万个cDNA片断(ESTs),相当于4-5万个基因,占7-10万个人类总基因的50%左右。目前

表达谱芯片的介绍与应用

基因表达谱芯片可使是科研工作者实现在MRNA水平上同时平行研究成百上千乃至上万条基因的表达关系。 它与传统的研究基因表达的方法(如差异cDNA文库筛选、Northern blot和PCR)相比较,可为使用者节省大量的研究经费和时间并获得范围更广、更具有关联性的研究结果。它的主要用途是用于大规

液相芯片技术的技术应用

白血病是严重威胁人类健康的恶性疾病,既往的细胞形态学分型诊断符合率及正确率受检测者主观成分影响较大,近两年白血病分子特征的研究取得了明显进展,尤其是对染色体易位形成的融合基因,有一些已作为诊断不同类型白血病的分子生物学特异性标志和确定诊断的唯一依据。基于此,在流式荧光技术基础上推出的白血病融合基因检