微流控芯片技术应用
按照技术原理,可暂将分子诊断技术大致划分为PCR技术、分子杂交、基因测序、核酸质谱、生物芯片(包括基因芯片、微流控芯片)5大类。今天就为大家分析介绍微流控技术的相关情况。在本文之前,小编已经陆续整理了一些相关文章,包括对分子诊断技术概况的介绍、NGS技术在病原微生物检测中的应用、数字PCR技术的优势及应用、基因检测的广泛用途等文章,可供读者全面了解相关领域的知识。微流控技术的主要形式为微流控芯片或者称芯片实验室,主要是指以生物化学和分析化学为基础,以微管道网络为结构特征,将整个分析实验室的功能,包括采样、样品前处理、反应、分离、检测等集合在一块几平方厘米的芯片上进行分析的技术。微流控芯片技术优势生命分析技术不断发展,在新的时代背景,又面临新挑战和发展机遇:要求在特别小的空间,特定的时间,特定的外界条件进行物质定性、定量、结构分析、形貌分析等工作。而微流控技术的出现为生命分析面临的三大特殊挑战提供了有力的操控工具。微流控技术具有如......阅读全文
微流控芯片技术应用
按照技术原理,可暂将分子诊断技术大致划分为PCR技术、分子杂交、基因测序、核酸质谱、生物芯片(包括基因芯片、微流控芯片)5大类。今天就为大家分析介绍微流控技术的相关情况。在本文之前,小编已经陆续整理了一些相关文章,包括对分子诊断技术概况的介绍、NGS技术在病原微生物检测中的应用、数字PCR技术的优势
微流控芯片应用
微流控芯片技术在水环境污染分析中的研究尚处于起步阶段,因此多集中于优先污染物的相关报道,主要包括重金属、营养元素、有机污染物和微生物等。 1、用肝水体中重金属检测的微流控芯片系统 随着工农业的发展, 越来越多的重金属如汞、铬、铅、铜、镍、钒等被排放入水体,不仅会对水生动植物产生毒害作用,还能通过
微流控芯片技术
微流控,是一种精确控制和操控微尺度流体,尤其特指亚微米结构的技术。通过在微尺度下流体的控制,在20世纪80年代,微流控技术开始兴起,并在DNA芯片,芯片实验室,微进样技术,微热力学技术等方向得到了发展。 微流控分析芯片最初在美国被称为"芯片实验室"(lab-on-a-chip),在欧洲被称为"
微流控芯片的应用
微流控芯片技术是把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本单元集成到一块微米尺度的芯片上,自动完成分析全过程。微流控芯片应用十分广泛: 1、在核酸研究中的应用核酸研究的技术如DNA萃取/纯化、PCR扩增、分子杂交、电泳分离和检测等都可以在微流控芯片上实现。如今已有
微流控芯片检测技术
微流控芯片检测器的性能要求检测是微流控芯片里相对特殊的一一个操作单元,它的基本功能是用于捕捉并放大微流控芯片某一部分产生的信号。与传统的仪器分析系统相比,微流控芯片分析系统对检测器有一些特殊的要求: 1.更高的灵敏度和信噪比 在微流控芯片分析过程中,被检测物质的进样体积小,检测区域也非常小,
微流控芯片技术分类
在产业化中,微流控一般分为以下几大类型:压力推动式微流控、离心力推动式微流控、液滴微流控、数字化微流控、毛细力驱动微流控等。 压力推动式微流控主要利用气压或者液压来推动流体在芯片中的运动,在微流控产业化中出现的最多,像赛沛的GeneXpert、生物梅里埃的filmarray、罗氏诊断的coba
多器官微流控芯片技术及其应用
微流控芯片技术(Microfluidics)也被称为芯片实验室(Lab-On-a-Chip, LOC),涉及物理、化学、医学、流体、电子、材料、机械等多学科交叉的研究领域。通过微通道、反应室和其他某些功能部件,对流体进行精准操控,对生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单
多器官微流控芯片技术及其应用
微流控芯片技术(Microfluidics)也被称为芯片实验室(Lab-On-a-Chip, LOC),涉及物理、化学、医学、流体、电子、材料、机械等多学科交叉的研究领域。通过微通道、反应室和其他某些功能部件,对流体进行精准操控,对生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集
微流控芯片
微流控是一种精确控制和操控微尺度流体,尤其特指亚微米结构的技术,是利用MEMS技术将一个大型实验室系统缩微在一个玻璃或塑料基板上,从而复制复杂的生物学和化学反应全过程,快速自动地完成实验。 微流控芯片有着强大的集成性,可以同时大量平行处理样品,具有灵敏度高、效率高、试剂消耗量低、环境污染小等特
微流控芯片表面改性技术
操作单元尺度在微米级的微流控芯片构件表面有三个明显的特点:1.表面积/体积比大。在微流控芯片中随着表面积与体积比的增大,表面效应显著,表面的重要性被强化,表面的微小变化就会对流体的行为产生大的影响。2.材料多元化。微流控芯片材质多样,增加了芯片表面的复杂性。不同的表面电渗不同,对不同分子的相互作用方
微流控芯片膜过滤技术
过滤技术的集成是微流控芯片研究的热点,从已有文献报道来看,微过滤器的形式多样,常见的有围堰式、栅栏式、阵列式及多孔膜式等。其中多孔膜结构为基础的膜过滤最具吸引力,与其他几类只能截留较大颗粒或者细胞的微过滤器相比,其优点是它可以实现分子水平的分离,具有更好的选择性。在微流控戏芯片上,多孔膜结构的引入可
简单介绍微流控芯片技术
微流控芯片技术是把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上,自动完成分析全过程。由于它在生物、化学、医学等领域的巨大潜力,已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新研究领域。 1、微流控芯片的加工方法 微流控芯
微流控芯片技术将是微流控装置制造中的要点
在过去的几十年里,微流控技术在生物医学研究和临床应用中发挥了极大的优势。由于全球人口老龄化以及工业化国家医疗基础设施的增加,预计到2021年,微流控市场将达到87.8亿美元。微流控技术通过主动或被动力来处理少量流体,通常为微升和纳升来执行所需的测试。流程开发 开发可靠的微制造工艺,其可达到设计和性能
微流控芯片原理
微流控芯片技术(Microfluidics)是把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上, 自动完成分析全过程。 由于它在生物、化学、医学等领域的巨大潜力,已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新研究领域。
微流控芯片优势
1)高分析效率:在PCR检验领域,相比传统的PCR检验,现有的微流控芯片能够将诊断检测过程缩短至最低 10-15 分钟; 2)高精确度:硅制的确定性侧向位移微流控芯片比之前公认的最精密的芯片粒子分离技术的分离孔径要小50倍,意味着检测精度也将提高50倍; 3)集成化:采用微加工机技术,将所需
浅析微流控芯片
微流控芯片是一种把整个化验室的功能,包括采样、稀释、加试剂、反应、分离、检测等集成在微芯片上,且可以多次使用的装置。微流控芯片常以硅、玻璃、石英、热塑性塑料为材料。微流控芯片的基本概念 微流控芯片实验室,又称其为芯片实验室或微流控芯片技术,是把生物、化学、医学分析过程的样品制备、反应、分离、检
何谓微流控芯片?
微流控芯片是用于微流控研究的装置,其中的微通道已经被模塑或图案化。形成微流控芯片的微通道被连接起来以允许流体流过不同的通道,从一个地方流到另一个地方。这些微流道网络通过进口和出口连接到外部环境。通过被动方式或外部有源系统(压力控制器、注射泵或蠕动泵)从微流控芯片中注入、管理、移除液体或气体。通道可具
微流控芯片原理
微流控芯片技术(Microfluidics)是把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上, 自动完成分析全过程。 由于它在生物、化学、医学等领域的巨大潜力,已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新研究领域。
微流控芯片系统
微流控芯片又称芯片实验室,被公认是21世纪最重要的前沿科学技术之一。在与国际学术界几乎同期起步,缺少可借鉴先进技术和商业支撑的情况下,我所在微流控芯片细胞学研究、芯片检测仪和试剂盒研制方面开展了深入研究,并将其应用于以细胞生物学研究、疾病诊断和药物筛选为代表的生物医学领域。目前已构建了一系列具
微流控分析芯片加工技术
微流控分析是以微管道为网络连接微泵、微阀、微储液器、微电极、微检测元件等具有光、电和流体输送功能的元器件,最大限度地把采样、稀释、加试剂、反应、分离、检测等分析功能集成在芯片上的微全分析系统。目前,微流控分析芯片的大小约几个平方厘米,微管道宽度和深度(高度)为微米和亚微米级。微流控分析芯片的加工技术
对微流控芯片技术的展望
微流控技术由微加工技术与三维培养相结合产生,在体外细胞培养中潜力较高。多器官微流控芯片技术可在微尺度对流体精准控制,模拟人体生理环境,克服了传统二维细胞培养模式与动物实验的不足,具有高度仿生性。MOC系统的发展结合了工程技术的优点,可调整流体流动和微通道中可控的局部组织-流体比率。MOC技术旨在建立
简述微流控芯片键合技术
微流控芯片实验室的成品率普遍较低,其中密封技术是微流控芯片制造过程的关键步骤,也是难点之一,封合不佳就会出现漏液,从而影响实验结果。玻璃等硬质材料常通过热键合和阳极键合技术实现密封,而节能省时的低温玻璃键合技术更受科研人员的青睐。此外,胶黏剂键合和表面改性键合以其便捷性和实用性的优势成为玻璃和聚合物
微流控芯片的技术优势
生命分析技术不断发展,在新的时代背景,又面临新挑战和发展机遇:要求在特别小的空间,特定的时间,特定的外界条件进行物质定性、定量、结构分析、形貌分析等工作。而微流控技术的出现为生命分析面临的三大特殊挑战提供了有力的操控工具。微流控技术具有如下特点:· 集成小型化与自动化: 通过流道的尺寸和曲度、微阀门
微流控芯片加工技术解析
微流控芯片的发展 微全分析系统的概念是在1990年首欠由瑞士Ciba2Geigy公司的Manz与Widmer提出的,当时主要强调了分析系统的“微”与“全”,及微管道网络的MEMS加工方法,而并未明确其外型特征。次年Manz等即在平板微芯片上实现了毛细管电泳与流动。微型全分析系统当前的发展前沿。
微流控芯片的加工技术
一、光刻(lithography)和刻蚀技术(etching)1.光刻工艺光刻是用光刻胶、掩模和紫外光进行微制造 ,工艺如下 :①仔细地将基片洗净;②在干净的基片表面镀上一层阻挡层 ,例如铬、二氧化硅、氮化硅等;③再用甩胶机在阻挡层上均匀地甩上一层几百 A厚的光敏材料——光刻胶。光刻胶的实际厚度与它
微流控技术的PCR生物微芯片技术原理!
基于数字流控(DMF)的聚合酶链式反应 (PCR)微芯片系统设计 ,主要在于对样品液滴的运动进行控制和对进行PCR所需要的温度控制 。设计了一种基于介电润湿 (Ew0D)原理的数字微流控PCR微芯片,并实现了对芯片不同区域的温度控制以满足PCR所需的要 求。基于数字微流控技术的PCR微芯片系统由
浅析微流控芯片的微流体控制技术
微流体操纵技术是微流控芯片技术中最重要的一个研究领域之一,通过各种机械或非机械力实现对流体的驱动和控制。依据微流体驱动体系中有无机械活动部件,可以将其分为机械和非机械驱动系统。 a、机械驱动系统 主要包括压电微泵、静电微泵等,它主要是通过静电、压电等不同方法来触发引起的机械部件的运动,从而为
微流控技术实际应用
从市场应用来看,目前还只是集中在生物、医药等领域,其他更多还处于科研探索阶段。 体外诊断(IVD) 从目前的应用来看,体外诊断是微流控技术的最大应用场景。而体外诊断中,微流控技术的重点应用在于化学发光(免疫诊断)和分子诊断中。 作为IVD的细分,POCT是现场即时采样分析、快速得到检测结果
解密微流控技术的PCR生物微芯片技术原理
基于数字流控(DMF)的聚合酶链式反应 (PCR)微芯片系统设计 ,主要在于对样品液滴的运动进行控制和对进行PCR所需要的温度控制 。设计了一种基于介电润湿 (Ew0D)原理的数字微流控PCR微芯片,并实现了对芯片不同区域的温度控制以满足PCR所需的要 求。基于数字微流控技术的PCR微芯
微流控芯片技术构建多重诱导神经芯片模型
神经系统发育是一个高度动态和极其复杂的过程。建立体外仿生的组织细胞外微环境,探索和理解这些错综复杂的神经发育过程对神经科学、发育生物学及临床医学都具有极大的科学研究与应用价值。然而,目前国内外学者研究主要集中于单因素诱导的神经发育,对于多诱导因素参与的神经系统发育微环境体外构建及其技术与方法,还有待