我国研究人员在稻田生物固氮研究中取得进展

生物固氮是稻田区别于旱地的本质特征,也是稻田生产力维持的关键。 中国科学院南京土壤研究所谢祖彬团队经过多年研究,创建了稻田生物固氮的田间原位直接定量技术;揭示了稻田生物固氮主要发生在0-5cm,尤其是0-1cm土壤表层;首次阐明了光合固氮和异养固氮对稻田生物固氮的贡献。提出了铝氧化物抑制念珠藻生长是固氮量减少的关键因素;发现生物固氮的氮主要由K型微生物亚硝化螺菌参与氨氧化过程;提出了施钼可大幅度提高稻田生物固氮量,并利用15N同位素探针技术证实非异形蓝细菌(non-heterocystous)细鞘丝藻属(leptolyngbya)和微鞘藻属(Microcoleus)是钼增加稻田生物固氮的主要贡献者;揭示了杂交水稻提高稻田生物固氮的机理。 相关研究结果在Soil Biology Biochemistry(2篇)、Biology and Fertility of Soils(1篇)、Science of Total Envi......阅读全文

固氮酶的固氮的过程简述

固氮的过程中每个电子的传递需要消耗2~3个ATP,而且一般固氮生物在固氮的同时也会产生氢气,因此固氮的总反应式可写为:N2 + 8 H+ + 8 e- ---------> 2NH3 + H2此过程消耗16~24个ATP。

树叶固氮不是梦-细菌固氮新说挑战传统理论

   在热带雨林之外生长最快的树木是白杨。这种树高而细长,在不到10年的时间里就可以长到30米高,即便是生长在它们似乎并不适宜的环境里,如焚烧的土地以及多沙的河岸。  Sharon Doty说,这样的生长速度得益于其叶片和其他组织中的微生物。当白杨的叶子细胞忙着把日光转化为能量时,叶子细胞中的细菌会

固氮的主要分类

人工固氮人工固氮长期以来,人们期望着农田中粮食作物能像豆科植物一样有固氮能力,以减少对 化肥的依赖。70年代首先实现了细菌之间的固氮 ... 主要在合成氨中实现人工固氮(工业上通常用H2和N2 在催化剂、高温、高压下合成氨,化学方程式:N2 + 3H2=(高温高压催化剂)2NH3)。 所有的含氮化学

Chem封面:电池?固氮?

  氮气,作为地球大气层中含量最高的气体,可谓取之不尽用之不竭。但是,氮气分子中两个氮原子之间的N≡N三键十分强大,键能高达946 kJ/mol,在正常条件下相当稳定。因此将空气中的游离氮转化为化合态氮的固氮过程,对于化学工业来说很不容易。目前最成功的利用氮气和氢气制造氨的哈伯法(Haber-Bös

什么是人工固氮

固氮分子氮经自然界的固氮生物(如各种固氮菌)固氮酶的催化而转化成氨的过程。是氮循环的重要阶段1、人工固氮   工业上通常用H2和N2 在催化剂、高温、高压下合成氨   化学方程式:N2 + 3H2=(高温高压催化剂)2NH3   最近,两位希腊化学家,位于Thessaloniki的阿里斯多德大学的G

植物固氮成本不菲

含羞草树 图片来源:Olivier Vandeginste/Science Source 当谈到获取最重要的营养素时,有些植物会招募一些“小朋友”:生活在其根部隆起处、从空气中获取氮的土壤细菌。一项新研究表明,维持这些搭档的成本很高,以至于一些物种放弃了这些微生物园丁。 来自10个植物

植物固氮成本不菲

当谈到获取最重要的营养素时,有些植物会招募一些“小朋友”:生活在其根部隆起处、从空气中获取氮的土壤细菌。一项新研究表明,维持这些搭档的成本很高,以至于一些物种放弃了这些微生物园丁。来自10个植物家族的物种,包括花生、豆类和含羞草树,都能够在贫瘠的土壤中茁壮成长,因为它们与所谓的固氮细菌结合在一起。但

植物固氮成本不菲

含羞草树 图片来源:Olivier Vandeginste/Science Source 当谈到获取最重要的营养素时,有些植物会招募一些“小朋友”:生活在其根部隆起处、从空气中获取氮的土壤细菌。一项新研究表明,维持这些搭档的成本很高,以至于一些物种放弃了这些微生物园丁。 来自10个植物家族的

固氮作用(nitrogen-fixation)

分子态氮被还原成氨和其他含氮化合物的过程。自然界氮(N2 )的固定有两种方式:一种是非生物固氮,即通过闪电、高温放电等固氮,这样形成的氮化物很少;二是生物固氮,即分子态氮在生物体内还原为氨的过程。大气中90%以上的分子态氮都是通过固氮微生物的作用被还原为氨的。生物固氮是固氮微生物的一种特殊的生理功

固氮酶结构介绍

Fe蛋白Fe蛋白由 nifH基因编码 。对多种生物固氮酶铁蛋白的一级结构的测定结果表明 , Fe蛋白都不含色氨酸 ,酸性氨基酸的含量均高于碱性氨基酸 ,各属种间的同源性为 45% ~ 90%,说明铁蛋白的基本结构较为保守 。Fe蛋白是两个相同的亚基组成的 γ2型二聚体 。二聚体的分子量约为 59 ~

固氮菌有哪些特性?

  在无氮培养、温度18~40℃时,菌株均能生长且有固氮酶活性,其最适生长及固氮的温度为26~37℃;在偏酸(pH值5.0)和偏碱(pH值8.0)的条件下,菌株均能保持较强的生长势和较高的固氮酶活性,并能通过调节自身代谢适应环境的酸、碱变化,使培养液趋近中性;培养液中NaCl浓度在0.5~2.5g/

豆科植物固氮“氧气悖论”破解

根瘤被称为豆科植物的“固氮工厂”,反映豆科植物与固氮根瘤菌的共生关系。豆血红蛋白(又称共生血红蛋白)存在其中,是根瘤中调节氧气浓度的“开关”,氧气是豆科植物和根瘤菌呼吸必需的,但根瘤菌中的固氮酶更喜欢低氧环境,“氧气悖论”就产生了。这一悖论始终悬而未决,也就是说,迄今为止有关根瘤内豆血红蛋白基因表达

豆科植物固氮“氧气悖论”破解

根瘤被称为豆科植物的“固氮工厂”,反映豆科植物与固氮根瘤菌的共生关系。豆血红蛋白(又称共生血红蛋白)存在其中,是根瘤中调节氧气浓度的“开关”,氧气是豆科植物和根瘤菌呼吸必需的,但根瘤菌中的固氮酶更喜欢低氧环境,“氧气悖论”就产生了。这一悖论始终悬而未决,也就是说,迄今为止有关根瘤内豆血红蛋白基因表达

固氮酶的基本信息

固氮酶是一种能够将氮分子还原成氨的酶。固氮酶是由两种蛋白质组成的:一种含有铁,叫做铁蛋白,另一种含铁和钼mo3+,称为钼铁蛋白。钼铁蛋白中含有7个铁,9个硫,1个钼,1个中心碳。

关于固氮菌的发展介绍

  1901年,M.W.拜耶林克首先发现并描述了这类细菌,他定名的有2个种:一是褐色固氮菌,常生存于中性或碱性土壤中;一是活泼固氮菌,常生存于水中。后来,各国学者相继分离出许多不同的菌株。1938年,C.H.维诺格拉茨基将生产孢囊的菌株(以褐色固氮菌为代表)归属于固氮菌属,将不产生孢囊的菌株(以活泼

请问固氮菌有哪些用途?

  在形形色色的固氮菌中,名声最大的要数根瘤菌了。根瘤菌平常生活在土壤中,以动植物残体为养料,自由自在地过着“腐生生活”。当土壤中有相应的豆科植物生长时,根瘤菌便迅速向它的根部靠拢,并从根毛弯曲处进入根部。豆科植物的根部细胞在根瘤菌的刺激下加速分裂、膨大,形成了大大小小的“瘤子”,为根瘤菌提供了理想

固氮酶的作用和结构

固氮酶是一种能够将氮分子还原成氨的酶。固氮酶是由两种蛋白质组成的:一种含有铁,叫做铁蛋白,另一种含铁和钼mo3+,称为钼铁蛋白。钼铁蛋白中含有7个铁,9个硫,1个钼,1个中心碳。

人为固氮作用的相关介绍

  人为的固氮作用,即化学氮肥的生产和应用,大规模种植豆科植物等有生物固氮能力的作物,以及燃烧矿物燃料生成NO和NO2。人为的固氮量是很大的,估计约占全球年总固氮量的20~30%。随着世界人口的增多,这一比例将会继续上升。  农田大量施用氮肥,使排入大气的N2O不断增多。在没有人为干预的自然条件下,

共生固氮菌的相关介绍

  在与植物共生的情况下才能固氮或才能有效地固氮,固氮产物氨可直接为共生体提供氮源。主要有根瘤菌属(Rhizobium)的细菌与豆科植物共生形成的根瘤共生体,弗氏菌属(Frankia,一种放线菌)与非豆科植物共生形成的根瘤共生体;某些蓝细菌与植物共生形成的共生体,如念珠藻或鱼腥藻与裸子植物苏铁共生形

关于固氮酶的基本介绍

  固氮酶是一种能够将氮分子还原成氨的酶。固氮酶是由两种蛋白质组成的:一种含有铁,叫做铁蛋白,另一种含铁和钼mo3+,称为钼铁蛋白。钼铁蛋白中含有7个铁,9个硫,1个钼,1个中心碳。  1960年 ,人们获得了无细胞的固氮酶提取液,在此基础上 , Carnahan和 Mortenson等成功地实现了

关于固氮菌的原理简介

  氮气是空气中的主要成分,占空气总量的五分之四。然而由于氮气分子被三条“绳索”--化学键所束缚,因此大部分植物只能“望氮兴叹”。固氮菌的本领在于它有一把“神刀”--固氮酶(含有Fe Co Mo即铁钴钼),可以轻易地切断束缚氮分子的化学键,把氮分子变为能被植物消化、吸收的氮原子。 俄罗斯莫斯科大学生

关于固氮酶组成结构分析

Fe蛋白Fe蛋白由 nifH基因编码 。对多种生物固氮酶铁蛋白的一级结构的测定结果表明 , Fe蛋白都不含色氨酸 ,酸性氨基酸的含量均高于碱性氨基酸 ,各属种间的同源性为 45% ~ 90%,说明铁蛋白的基本结构较为保守 。Fe蛋白是两个相同的亚基组成的 γ2型二聚体 。二聚体的分子量约为 59 ~

固氮酶组分2的基本-信息

中文名称固氮酶组分2英文名称nitrogenase 2定  义一种铁硫蛋白。接受来自铁氧还蛋白的电子传递给固氮酶组分1,伴随着ATP水解为ADP。分子质量50~60 kDa,由2个单体组成,含4个铁原子,十几个硫原子。应用学科生物化学与分子生物学(一级学科),酶(二级学科)

固氮酶的多样性介绍

在 Bishop等发现第二套固氮系统以前 , 人们一直认为 ,钼铁蛋白和铁蛋白组成的固氮酶系统是固氮生物中起固氮作用的唯一系统 。 Bishop在对棕色固氮菌的研究中 ,发现存在另外一种固氮酶系统 , 使生物体在缺乏 Mo的条件下可以固氮生长 。这种含钒固氮酶只在无 Mo而有 V的条件下表达 ,由

固氮酶的多样性分析

在 Bishop等发现第二套固氮系统以前 , 人们一直认为 ,钼铁蛋白和铁蛋白组成的固氮酶系统是固氮生物中起固氮作用的唯一系统 。 Bishop在对棕色固氮菌的研究中 ,发现存在另外一种固氮酶系统 , 使生物体在缺乏 Mo的条件下可以固氮生长 。这种含钒固氮酶只在无 Mo而有 V的条件下表达 ,由

关于固氮酶MoFe蛋白的介绍

  Kennedy等人通过 SDS-PAGE法 ,发现钼铁蛋白含有两种亚基 , 已经确定其为异四聚体 (α2 β 2 ),分子量约 220k~ 240kD之间 (因不同来源而异 )。α亚基分子量为 55kD,由 nifD基因编码 , 大小约为 500个氨基酸 ,氨基酸序列的同源性在 47% ~ 66

工业上常用的固氮方法是什么

N2+3H2=2NH3(可逆反应,条件高温高压催化剂)工业上利用合成氨实现人工固氮,最常用的是哈伯法,也就是氮气与氢气在高温高压催化剂(铁)作用下发生化合生成氨,然后再经一系列的反应转化为其他有价值的化合物,如硝酸、氮肥、含氮炸药等等。

自生固氮菌的简介和培养

  自生固氮菌  还有一些固氮菌,如圆褐固氮菌,它们不住在植物体内,能自己从空气中吸收氮气,繁殖后代,死后将遗体“捐赠”给植物,让植物得到大量氮肥。这类固氮菌叫自生固氮菌。  培养  在实验条件下培养自生固氮菌,培养基中只需加入碳源(如蔗糖、葡萄糖)和少量无机盐,不需加入氮源,固氮菌可直接利用空气中

固氮酶组分1的基本信息

中文名称固氮酶组分1英文名称nitrogenase 1定  义一种钼铁蛋白,接受来自固氮酶组分2的电子催化双氮还原为氨。存在于具有固氮能力的细菌和蓝藻中,根据来源不同,大小有一定的差异,分子量约为二十几万,由4个单体组成,含1~2个钼原子、十几个铁原子和十几个硫原子。应用学科生物化学与分子生物学(一

固氮酶组分1的基本信息

中文名称固氮酶组分1英文名称nitrogenase 1定  义一种钼铁蛋白,接受来自固氮酶组分2的电子催化双氮还原为氨。存在于具有固氮能力的细菌和蓝藻中,根据来源不同,大小有一定的差异,分子量约为二十几万,由4个单体组成,含1~2个钼原子、十几个铁原子和十几个硫原子。应用学科生物化学与分子生物学(一