Antpedia LOGO WIKI资讯

飞行时间质谱与四级杆质谱的比较

ToF-MS与四级杆质谱的比较 四级杆质谱(Quadru Pole Mass Analyzer Mass Spectrometer, QMA-MS)在采样过程中,每次只允许一个特定的m/z通过,因此如果要获得完整的质谱图,需要对不同的m/z进行连续扫描。在大气化学领域生产四级杆质谱的主要生产商为Aerodyne的ACSM产品和THS。[3]而ToF-MS在每次进样时,可以全谱采集样本中所有的m/z,提高了数据采集效率,并允许回溯分析。 四级杆质谱进行24小时检测所获得的数据量通常为2MB左右,而ToF-MS在一天所采集的数据可以达到10GB。......阅读全文

飞行时间质谱与四级杆质谱的比较

  ToF-MS与四级杆质谱的比较  四级杆质谱(Quadru Pole Mass Analyzer Mass Spectrometer, QMA-MS)在采样过程中,每次只允许一个特定的m/z通过,因此如果要获得完整的质谱图,需要对不同的m/z进行连续扫描。在大气化学领域生产四级杆质谱的主要生产商

简介飞行时间质谱的化学电离质谱

  化学电离质谱(Chemical Ionization Mass Spectrometer, CIMS)是大气领域中一种常见的软电离(Soft Ionization)手段。使用化学电离的好处是不会产生离子碎片,并可在线进样实时分析。目前大气化学领域采用的试剂(reagent),硝酸、乙醇、水最为常

飞行时间质谱与普通质谱有什么区别

所谓飞行时间质谱是指其质量分析是根据离子在通道飞行时间来识别的。 一价离子在经过提取电压后获得相同的动能,由于不同离子的质量不同,导致飞行速度不同,从而在相同的通道内的飞行时间不同。 还有四级杆质谱:通过改变交变电压来选取不同离子。 扇形磁场质谱:通过带点离子在磁场内的轨迹不同来识别离子。

离子阱与四级杆质谱的区别

离子阱重定性,可得到多级碎片,从而推导结构,常用于未知化合物结构推导,全扫描灵敏度很高,可超过TOF.四级杆或三重四级杆重定量,全扫描灵敏度低大约10到100个数量级,但是在选择离子扫描模式下灵敏度很高从而用于已知化合物定量,常用于农残、兽残、血药浓度测定。

质谱那些事——飞行时间质谱的诞生(一)

飞行时间质谱萌芽于曼哈顿计划。 在1942-1945年期间,一些科学家意图设计这样的系统:一个恒定的加速电压U,一段真空管提供固定的飞行距离L,利用离子到达探测器时间t的不同来进行质荷比m/z的区分。 原理很简单,几个基本公式即可理解: 鉴于保密的原因,这个想法

质谱那些事——飞行时间质谱的诞生(二)

然而当时的技术条件,分辨率并不是优势! 这是Bendix利用TOF测定氙气的同位素质谱图, 从左到右分别是128,129,130,131,132,134和136,按照现代飞行时间分辨率的计算方式,这个分辨率只有 大约 130/0.25=520。 简单的原理背后往往隐藏着工

三重四级杆质谱原理

  在U的值为500-2000 V,V为0-3000 V 。这样的电场环境下,离子会根据电场进行震荡。然而,只有特定荷质比的离子可以稳定的通过电场。   当极杆上的电压被指定时,质量过小的离子会受到很大的电压影响,从而进行非常激烈的震荡,导致碰触极杆失去电荷而被真空系统抽走;质量过大的离子因为不

三重四级杆质谱原理

在U的值为500-2000 V,V为0-3000 V 。这样的电场环境下,离子会根据电场进行震荡。然而,只有特定荷质比的离子可以稳定的通过电场。 当极杆上的电压被指定时,质量过小的离子会受到很大的电压影响,从而进行非常激烈的震荡,导致碰触极杆失去电荷而被真空系统抽走;质量过大的离子因为不能受到足

三重四级杆质谱原理

三重四级杆质谱原理: 在U的值为500-2000 V,V为0-3000 V 。这样的电场环境下,离子会根据电场进行震荡。然而,只有特定荷质比的离子可以稳定的通过电场。 当极杆上的电压被指定时,质量过小的离子会受到很大的电压影响,从而进行非常激烈的震荡,导致碰触极杆失去电荷而被真空系统抽走;质量

三重四级杆质谱原理

三重四级杆质谱原理: 在U的值为500-2000 V,V为0-3000 V 。这样的电场环境下,离子会根据电场进行震荡。然而,只有特定荷质比的离子可以稳定的通过电场。 当极杆上的电压被指定时,质量过小的离子会受到很大的电压影响,从而进行非常激烈的震荡,导致碰触极杆失去电荷而被真空系统抽走;质量