Antpedia LOGO WIKI资讯

乳糖不耐受,改变机体肠道微生物组了解一下

童年以后,全球大约三分之二的人群都会失去消化牛奶的能力,正如我们所知,断奶后100%的非人类哺乳动物也会失去这种能力,进入成年期,持续消化乳糖(牛奶中的主要糖类)的能力是一种生物学异常表现。图片来源:tomcorsonknowles.com 乳糖并不会被肠道直接吸收,相反,其必须被乳糖酶破碎成两种较小的糖类分子,正常情况下, 产生乳糖酶的基因LCT的活性会在婴儿期后逐渐下降,然而最新研究表明,该基因活性的下降或许并不是因为遗传代码发生了改变,其DNA能被化学性地修饰以便乳糖酶基因的功能被关闭,这种修饰会影响基因的活性并让DNA序列变得完整,其称之为“表观遗传化修饰”,这种关闭乳糖酶基因的修饰作用并不会在乳糖耐受个体机体中发生,相关研究结果或能帮助研究人员深入阐明乳糖不耐受如何随着年龄增长或肠道的损伤而发生的。 还有一些人因为遗传因素原因本应该能够消化乳糖,但在生命晚期却失去了这种能力(无论是自发性的或小肠因疾病和其它创伤......阅读全文

改变机体肠道微生物组真能逆转乳糖不耐受?

  童年以后,全球大约三分之二的人群都会失去消化牛奶的能力,正如我们所知,断奶后100%的非人类哺乳动物也会失去这种能力,进入成年期,持续消化乳糖(牛奶中的主要糖类)的能力是一种生物学异常表现。  乳糖并不会被肠道直接吸收,相反,其必须被乳糖酶破碎成两种较小的糖类分子,正常情况下, 产生乳糖酶的基因

乳糖不耐受,改变机体肠道微生物组了解一下

  童年以后,全球大约三分之二的人群都会失去消化牛奶的能力,正如我们所知,断奶后100%的非人类哺乳动物也会失去这种能力,进入成年期,持续消化乳糖(牛奶中的主要糖类)的能力是一种生物学异常表现。图片来源:tomcorsonknowles.com  乳糖并不会被肠道直接吸收,相反,其必须被乳糖酶破碎成

肠道免疫系统由肠道微生物守护!

  科学家们早就知道肠道细菌对宿主有各种各样的作用,例如分解膳食纤维、制造维生素K和B7等等。然而,一项新研究揭示,微生物还有另一个作用。  布朗大学的研究小组发现,小鼠体内肠道微生物正在参与调控宿主免疫。与其说宿主的防御系统可能攻击这些有益细菌,不如说细菌可以与动物的免疫系统和平共存。  对立的外

肠道微生物可以影响体重

  根据最近发表在《Mayo Clinic Proceedings》杂志上的一篇文章,对于特定人群来说,肠道微生物的特殊活性或许有助于减肥。这一效应不依赖于控制饮食以及日常锻炼等行为。  “我们知道不同人的减肥效率存在差别,即使在接受了相同的卡路里摄入以及相同强度的锻炼之后依然如此”,该研究的作者P

肠道微生物加入抗癌斗争

  2015年,Bertrand Routy还是法国古斯塔夫·鲁西癌症中心的一位博士生,他常去医院收集癌症患者的粪便样本。医生嘲笑他,甚至给他取了个外号:便便先生。  但Routy的研究结果发布后,人们停止了对这类研究的嘲笑。研究表明,某些肠道细菌似乎可以提高人们对抗癌治疗的反应。医生也盼望研究者能

肠道微生物影响饮食效果

  当你试着在新年里改善自己的饮食时,体内的微生物群却可能会“捣乱”。近日,刊登在《细胞—宿主和微生物》期刊上的论文称,研究人员探索了为何小鼠从自由的美式饮食转换到健康低卡路里的植物性饮食后,没有立刻出现效果。他们发现,若想一项新饮食计划取得成功,必须去除某些人体肠道细菌。  “如果我们想开饮食处方

肠道微生物药物的研发

  在人类的肠道里存在一个巨大的微生物群体,称之为“肠道微生态系统”,其作为宿主最重要的微生态系统组成部分,大约包含有15000~36000个菌种,由专性厌氧菌(>99%)、兼行厌氧菌和好氧菌共同组成,这些细菌共同构成胃肠道的动态微生态平衡。肠道在消化、吸收各种营养物质的同时又能将细菌及其代谢产物通

生活方式决定肠道微生物

  肠道菌群负责人体健康和营养的许多方面,但是大多数研究都集中在“西方”人群。目前,包括德国Max Planck进化人类学研究所在内的一项国际合作研究,首次分析了一个现代狩猎采集群体(坦桑尼亚的哈扎人)的肠道菌群。这项工作的结果表明,哈扎人拥有独特的肠道微生物属性,其特征在其他任何人群中都没有见

肠道微生物与老年相关疾病

按照WHO的标准,一个国家或地区65岁人口超过7%,或≥60岁人口超过10%即为老龄化。根据国家统计局2017年最新数据,我国≥60周岁人口为24090万人,占总人口的17.3%,其中≥65周岁人口为15831万人,占总人口的11.4%。我国已经成为世界上老年人口最多的国家,呈现出老龄化速度快、老年

Science:肠道微生物干扰了药效

  在最近一项研究中,加州大学旧金山分校的研究人员描述了微生物组如何干扰药物预期作用的第一个具体例子。他们专注于左旋多巴(L-dopa),这是帕金森病的主要治疗药物,他们确定了数万亿种细菌中的哪些细菌负责降解药物以及如何阻止这种微生物干扰现象的发生。  帕金森病会攻击大脑中产生多巴胺的神经细胞,如果