Antpedia LOGO WIKI资讯

JACS:季铵哌嗪取代罗丹明具有亮度增强的超分辨率成像

近年来,先进的荧光成像技术得到了快速的发展,但是与成像技术的治疗进化相比,具有足够亮度和光稳定性的染料的发展仍然缓慢,如单分子定位显微镜(SMLM),其分辨率超过了衍射极限。但是荧光团亮度不足成为了超分辨显微镜发展的一大瓶颈,这也对体内细胞动力学研究构成了重要的限制。比如罗丹明染料被广泛应用,但由于在光激发下形成扭曲的分子内电荷转移(TICT),许多罗丹明染料出现亚于最佳亮度的现象。因此,迫切需要在合理的分子设计策略的基础上开发出明亮、耐光的染料。大连理工大学肖义、杨伟课题组和新加坡科技设计大学刘晓刚课题组开发了出一类具有优异量子产率(Φ= 0.93) 和优越的亮度(ε × Φ = 8.1 × 104 L·mol−1·cm−1)的季铵哌嗪取代罗丹明,防止TICT利用电子诱导效应,还成功地将这些罗丹明用于细胞微管、活细胞细胞膜和溶酶体固定后的超分辨率成像。最后,证明了这种策略可以推广到其他种类的荧光团,从而大大提高了量子产量。......阅读全文

JACS:季铵哌嗪取代罗丹明具有亮度增强的超分辨率成像

  近年来,先进的荧光成像技术得到了快速的发展,但是与成像技术的治疗进化相比,具有足够亮度和光稳定性的染料的发展仍然缓慢,如单分子定位显微镜(SMLM),其分辨率超过了衍射极限。但是荧光团亮度不足成为了超分辨显微镜发展的一大瓶颈,这也对体内细胞动力学研究构成了重要的限制。比如罗丹明染料被广泛应用,但

LSM​超分辨率和灵敏度。

超分辨率和灵敏度。       利用并行光谱采集和高速GPU去卷积的独特组合,提高图像质量。 Airyscan在横向120nm和轴向350nm的尺度上提供了高灵敏度的完美光学截面和超分辨率。这超越了去卷积方法,保留了在封闭针孔中通常被屏蔽了的宝贵的发射光信号,并实现了更高的分辨率

超分辨率荧光显微技术的意义

利用超高分辨率显微镜,可以让科学家们在分子水平上对活体细胞进行研究,如观察活细胞内生物大分子与细胞器微小结构以及细胞功能如何在分子水平表达及编码,对于理解生命过程和疾病发生机理具有重要意义。

超分辨率荧光显微技术的技术获奖

2014年10月8日,2014年度诺贝尔化学奖揭晓,美国科学家埃里克·白兹格、威廉姆·艾斯科·莫尔纳尔和德国科学家斯特凡·W·赫尔三人获得。官方称,该奖是为表彰他们在超分辨率荧光显微技术领域取得的成就 。

2016年《科学》综述:超分辨率显微技术

从列文虎克到21世纪,显微镜由一个看似牢不可破的原则所控制:分辨两个对象的能力受限于观察它们的光波波长。 但在2000年,研究人员显示出, 这种所谓的衍射极限可以被打破, 在接下来的十年中揭示了从 GSDIM和 PALM到 SIM、STED 和 STORM 的一系列像“字母汤”一样的超分辨率技术 。

郑州大学王朝阳JACS发文:超原子银纳米簇研究获突破

  分析测试百科网讯近日,《美国化学会志》(Journal of the American Chemical Society,JACS,影响因子为13.18)报道了郑州大学化学与分子工程学院臧双全教授课题组的最新研究成果:《原子尺寸精确的超原子银纳米簇的精准修饰与定向组装》(Atomically P

季铵哌嗪如何实现荧光超分辨率成像?

  近年来,先进的荧光成像技术得到了快速的发展,但是与成像技术的治疗进化相比,具有足够亮度和光稳定性的染料的发展仍然缓慢,如单分子定位显微镜(SMLM),其分辨率超过了衍射极限。但是荧光团亮度不足成为了超分辨显微镜发展的一大瓶颈,这也对体内细胞动力学研究构成了重要的限制。比如罗丹明染料被广泛应用,但

超分辨率激光共聚焦显微镜

  超分辨率激光共聚焦显微镜是一种用于化学、生物学领域的分析仪器,于2018年7月24日启用。  技术指标  1.在所有扫描方式下,均可以进行360°扫描旋转,0.1°步进,同时可以变倍以及移动扫描区域的中心。 2.扫描光学变倍≥40X,最好缩小≤0.6倍。 3.最大扫描分辨率≥8000 x 800

活细胞超分辨率显微技术研究获进展

  2016年12月31日,中国科学院生物物理研究所徐平勇课题组、中国科学院计算技术研究所张法课题组以及美国科学院院士HHMI研究员Jennifer Lippincott-Schwartz合作在《细胞研究》(Cell Research)在线发表了题为Live-cell single molecule

欧盟ChipScope项目:微型超分辨率光学显微镜

想象一下,把显微镜缩小,然后将其与芯片集成在一起,就可以使用它实时观察活细胞内部。如果像今天的智能手机相机一样,可以将这种微型显微镜也集成到电子产品中,那不是很好吗?如果医生设法使用这种工具在偏远地区进行诊断而又不需要大型、笨重和敏感的分析设备,该怎么办?欧盟资助的ChipScope项目在实现这些目