核磁共振成像技术步入分子层面

美国和加拿大科学家分别采用新型核磁共振成像(MRI)技术观测到人体内的分子变化,从而大大提高了MRI扫描的速度和精度,可在未来用于更快地检测癌症等疾病。研究发表在最新一期《科学》杂志上。 两国科学家使用的MRI技术都通过操控分子的旋转来提高扫描的速度和精度,从而可以在分子层面快速地完成诸如分析药物药效或推断肿瘤生长速度等工作,以更好地为人类健康服务。 加拿大研究人员通过操纵仲氢(仲氢是航天飞机上使用的燃料),将仲氢的磁性转移到许多更容易探测的分子上面,并在动物身上进行了该技术的测试。结果表明,新技术可以将扫描的灵敏度增加1000倍左右,原来统计生物系统数据需要花费90天时间,现在只需几秒就可以完成。 美国科学团队则调整了原子核的旋转来增强信号,在旋转状态的分子之间制造了很大不平衡,并且使分子变成了功能更加强大的磁体,可以产生更详细的图像。新技术得到的信号强度可能是传统MRI中氢原子所释放信号的几千倍甚至几万......阅读全文

核磁共振成像技术步入分子层面

  美国和加拿大科学家分别采用新型核磁共振成像(MRI)技术观测到人体内的分子变化,从而大大提高了MRI扫描的速度和精度,可在未来用于更快地检测癌症等疾病。研究发表在最新一期《科学》杂志上。   两国科学家使用的MRI技术都通过操控分子的旋转来提高扫描的速度和精度,从而可以在分子层面快速地完成诸如

英国欲用“超极化”推动医疗扫描技术进步

英国一家新建的研究中心正在大力推进先进的核磁共振成像(MRI)技术  英国一家新建的研究中心正在大力推进先进的核磁共振成像(MRI)技术,这一进展有望变革诊断疾病的方式。  这项新技术被称作利用仲氢实现超极化,由英国约克大学设计,能够大幅提高医院广泛使用的核磁共振成像

生物分子糖类核磁共振光谱

糖类核磁共振光谱解决糖类结构和构象的问题。

生物分子核酸核磁共振光谱

“核酸核磁共振”是利用核磁共振光谱学获得关于多核酸如DNA或RNA的结构和动力学的信息。截至2003年,所有已知RNA结构中近一半已通过核磁共振波谱法确定。核酸和蛋白质核磁共振波谱相似但存在差异。核酸具有较小的氢原子百分比,这是在NMR光谱学中通常观察到的原子,并且因为核酸双股螺旋是刚性的且大致线性

使用便携式科研级拉曼测量氢气

1. 前言基于拉曼原理的气体测量技术具有分析速度快,装置简单,对水汽干扰不敏感,无需复杂分离预处理,可在线同时测量多种气体等优点,但过去拉曼在气体测量领域应用远远少于液态或固态样品测量,这是因为气体的拉曼散射截面相对较小,拉曼仪器的灵敏度不够造成的。现在随着光谱仪技术进步,仪器探测灵敏度

生物分子蛋白质核磁共振光谱

利用核磁谱研究蛋白质,已经成为结构生物学领域的一项重要技术手段。X射线单晶衍射和核磁都可获得高分辨率的蛋白质三维结构,不过核磁常局限于35kDa以下的小分子蛋白,尽管随着技术的进步,稍大的蛋白质结构也可以被核磁解析出来。另外,获得本质上非结构化(Intrinsically Unstructured)

关于生物分子核磁共振光谱的介绍

  1、蛋白质  利用核磁谱研究蛋白质,已经成为结构生物学领域的一项重要技术手段。X射线单晶衍射和核磁都可获得高分辨率的蛋白质三维结构,不过核磁常局限于35kDa以下的小分子蛋白,尽管随着技术的进步,稍大的蛋白质结构也可以被核磁解析出来。另外,获得本质上非结构化(Intrinsically Unst

台式核磁共振波谱仪高分子领域

  使用核磁共振仪器测量聚氧乙烯的链的长度  聚氧乙烯的性能很大程度取决于链段的长度,所以链段的长度控制是生产中的关键,w我们可以通过测定羟基和亚甲基的比率来确定分子量。  PVC中增塑剂含量的测定  我们可以通过核磁检测塑料材料中增塑剂的含量,从而检测一些有毒材质。  泊洛沙姆结构分析  核磁共振

生物分子核磁共振光谱的基本信息介绍

  1、蛋白质  利用核磁谱研究蛋白质,已经成为结构生物学领域的一项重要技术手段。X射线单晶衍射和核磁都可获得高分辨率的蛋白质三维结构,不过核磁常局限于35kDa以下的小分子蛋白,尽管随着技术的进步,稍大的蛋白质结构也可以被核磁解析出来。另外,获得本质上非结构化(Intrinsically Unst

首套使用国产连续型换热器的氢液化系统开车成功

  2023年4月20日,由航天科技集团六院航天氢能科技有限公司研制的国产首套使用连续型正仲氢转化换热器的氢液化系统一次性开车成功,稳定产出液氢,包括控制系统、催化剂、连续型换热器等核心部件均实现国产,该系统是六院自2020年以来第三套研制开车成功的民用氢液化系统。  该系统攻克了氢液化流程中复杂“

核磁共振揭示纳米级多孔碳的分子机理|Matter

  分级纳米孔碳(HNC)是一种有效的吸附挥发性有机物的吸附剂。然而,在层次结构调控、吸附质吸收的吸附机制和HNC内部的相互作用方面仍然存在问题。斯坦福大学崔屹教授等人以木材为原料,采用K2CO3活化的微波诱导加热方法合成HNC。HNC表现出Murray定律的多尺度结构,促进了通过核磁共振(NMR)

高分子领域常用的表征方法之核磁共振分析(NMR)

核磁共振分析作为一种工具在高聚物研究中应用甚广,如相对分子质量测定、组成分析、动力学过程、结晶度、相变等。但最为突出之处,是对高分子材料分子链的立体规整性、链节不同取向的衔接(如头-头、头-尾键接等),链节序列分布及微结构的确定。而核磁共振分析在聚合物表征方面的应用主要包括:a.研究聚合物链的构型;

核磁共振

  发现病变  核磁共振成像是一种利用核磁共振原理的最新医学影像新技术,对脑、甲状腺、肝、胆、脾、肾、胰、肾上腺、子宫、卵巢、前列腺等实质器官以及心脏和大血管有绝佳的诊断功能。与其他辅助检查手段相比,核磁共振具有成像参数多、扫描速度快、组织分辨率高和图像更清晰等优点,可帮助医生“看见”不易察觉的早期

我所利用固体核磁共振揭示MFI型分子芳烃受阻运动机理

 近日,我所固体核磁共振及前沿应用研究组(510组)侯广进研究员、陈魁智研究员团队,利用固体核磁共振(ssNMR)技术,研究了客体芳烃分子运动行为,并对分子筛孔道的限域效应提出了新的理解。  分子筛独特的微孔孔道结构赋予其限域效应,对吸附分离和择型催化发挥重要作用。通常,分子筛限域效应随吸附分子尺寸

Science-|-江亚军博士使用核磁共振解析HSP40与底物分子结构

  iNature  分子伴侣蛋白控制着蛋白质的稳态平衡,是维持细胞生命的基石。分子伴侣蛋白功能的缺失可导致阿尔茨海默症,帕金森症等一系列常见重大疾病。Hsp40和Hsp70 分子伴侣蛋白组成一个协同工作的蛋白质机器,是分子伴侣蛋白网络的核心。分子伴侣蛋白的底物一般为尚未折叠、部分折叠或者错误折叠的

沸石分子筛催化剂的固体核磁共振(NMR)研究专题论文

  近日,应美国化学会综述性学术期刊Accounts of Chemical Research 的邀请,中国科学院武汉物理与数学研究所研究员徐君和邓风撰写了题为Metal active sites and their catalytic functions in zeolites: insights

核磁共振(NMR)波谱学方法在分子生物学中的应用

核磁共振技术发展史概述 1946年 E. M. Purcell和 F. Bloch发现核磁共振(NMR)现象 1965年前后 脉冲傅里叶变换NMR技术兴起 1971年 J. Jeener提出二维NMR 方法 80年代中 K. Wuthrich发展了运用同核二维核磁共振方法进行蛋白质NMR谱图的序列识

核磁共振波谱仪核磁共振谱仪定义

核磁共振(nuclear magnetic resonance, NMR)是磁矩不为零的原子核,在外磁场作用自旋能级发生蔡曼分裂,共振吸收某一定频率的射频辐射的物理过程。并不是是所有原子核都能产生这种现象,原子核能产生核磁共振现象是因为具有核自旋。原子核自旋产生磁矩,当核磁矩处于静止外磁场中时产生进

核磁共振现象

  (一)核有磁性  1.核由质子和中子组成  2.质子带正电,中子不带电  3.所以,原子核带正电的  4.另外,有些核具有内秉角动量(自旋)  5.奇数核子  6.奇数原子序数,偶数核子  因而核有磁性  磁矩 描述磁场强度与方向的矢量  自旋角动量  旋磁比,每个核都有一特定的值。有正有负,核

核磁共振应用

发现病变核磁共振成像是一种利用核磁共振原理的最新医学影像新技术,对脑、甲状腺、肝、胆、脾、肾、胰、肾上腺、子宫、卵巢、前列腺等实质器官以及心脏和大血管有绝佳的诊断功能。与其他辅助检查手段相比,核磁共振具有成像参数多、扫描速度快、组织分辨率高和图像更清晰等优点,可帮助医生“看见”不易察觉的早期病变,已

核磁共振概述

1945年Bloch和Purcell分别领导两个小组同时独立地观察到核磁共振(Nuclear Magnetic Resonance, NMR),他们二人因此荣获1952年诺贝尔物理奖。1991年诺贝尔化学奖授予R.R. Ernst教授,以表彰他对二维核磁共振理论及傅里叶变换核磁共振的贡献。这两次诺贝

核磁共振NMR

NMR(Nuclear Magnetic Resonance)为核磁共振。是磁矩不为零的原子核,在外磁场作用下自旋能级发生蔡曼分裂,共振吸收某一定频率的射频辐射的物理过程。核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核蔡曼能级上的跃迁。基本原理自旋量子数I不为零的核与

核磁共振原理

1.原子核的自旋 图 核磁共振原理图核磁共振主要是由原子核的自旋运动引起的。不同的原子 核,自旋运动的情况不同,它们可以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系,大致分为三种情况:I为零的原子核 可以看作是一种非自旋的球体;I为1/2的原子核可以看作是一种电荷分

核磁共振波谱仪核磁共振的发生及过程

1.原子核在磁场中的能级分裂质子有自旋,是微观磁矩,磁矩的方向与旋转轴重合。在磁场中,这种微观磁矩的两种自旋态的取向不同,能量不再相等,磁矩与磁场同向平行的自旋态能级低于磁矩与磁场反向平行的自旋态,两种自旋态间的能量差△E与磁场强度H0成正比: 式中,h为普朗克常数;H0为磁场的磁场强度,单位为T(

核磁共振波谱仪核磁共振谱仪发展现状

二十世纪后半叶,NMR技术和仪器发展十分快速,从永磁到超导,从60MHz到800MHz的NMR谱仪磁体的磁场差不多每五年提高一点五倍,这是被NMR在有机结构分析和医疗诊断上特有功能所促进的。现在有机化学研究中NMR已经成为分析常规测试手段,同样,在医疗上MRI(核磁共振成像仪器)亦成为某些疾病的诊断

核磁共振是什么

核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MRI),核磁共振CT。MRI是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显

核磁共振波谱方法

  一种现代仪器分析法。在外加磁场B中,自旋量子数为I的核自旋可以有2I+1个不同的取向。例如1H,13C,19F,31P(I均为1/2),则有2个不同的取向。这是由于带正电荷的核自旋所产生的磁场,可以有与外磁场B相同的取向(具有位能E1),也可能相反(位能E2),在常态下,当E2>E1时,处于E1

核磁共振的原理

核磁共振主要是由原子核的自旋运动引起的。不同的原子核,自旋运动的情况不同,它们可 以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系,大致分为三种情况,如下表。分类质量数原子序数自旋量子数INMR信号I偶数偶数0无II偶数奇数1,2,3,…(I为整数)有III奇数奇数或

核磁共振的原理

NMR(核磁共振)nuclear magnetic resonance。A phenomenon in which transitionsin the magnetic energy states of the nuclei of atoms are induced when the atoms a

核磁共振的原理

原子核的自旋。核磁共振主要是由原子核的自旋运动引起的。不同的原子核,自旋运动的情况不同,可以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系。原子核是带正电荷的粒子,不能自旋的核没有磁矩,能自旋的核有循环的电流,会产生磁场,形成磁矩(μ)。当自旋核(spin nucle