Antpedia LOGO WIKI资讯

MolecularPlant:生物钟调控叶片衰老新机制

生物钟是生物体为适应环境昼夜周期变化而进化出的协调细胞内基因表达、代谢网络调控的分子系统,调控植物的新陈代谢、生长发育等多个过程。生物钟使植物的内源节律与外部昼夜变化的光和温度等环境条件相协调,为植物的生长发育提供竞争性优势。叶片衰老过程能将营养和能量从衰老的叶片向正在发育的组织和器官转移,以便更好地适应环境胁迫,但生物钟是否参与调控叶片衰老过程尚不清楚。 中国科学院植物研究所王雷研究组发现,当拟南芥生物钟核心组分Evening Complex中任何组分发生突变,叶片衰老均会提前。转录组分析及茉莉酸诱导叶片衰老的生理实验表明,Evening Complex直接参与调控茉莉酸信号,而茉莉酸信号是调节植物叶片衰老的重要因子之一,其中MYC2是茉莉酸信号促进叶片衰老的关键转录因子。进一步研究发现,Evening Complex直接结合该基因启动子并抑制其表达,从而在时间维度精细调控茉莉酸诱导植物叶片衰老的进程。......阅读全文

Molecular Plant:生物钟调控叶片衰老新机制

  生物钟是生物体为适应环境昼夜周期变化而进化出的协调细胞内基因表达、代谢网络调控的分子系统,调控植物的新陈代谢、生长发育等多个过程。生物钟使植物的内源节律与外部昼夜变化的光和温度等环境条件相协调,为植物的生长发育提供竞争性优势。叶片衰老过程能将营养和能量从衰老的叶片向正在发育的组织和器官转移,以便

中科院植物所发现生物钟调控叶片衰老新机制

  记者日前从中国科学院植物研究所获悉,该所研究员王雷率领的团队以模式植物拟南芥为研究对象,发现了植物生物钟参与调控叶片衰老过程的有关机制。相关成果发表在最近的《分子植物》杂志上。  在拟南芥中,一个名叫“夜晚复合体”的组分是其生物钟的核心组分,由3种蛋白复合而成。研究人员发现,当“夜晚复合体”中任

小麦叶片衰老态势核磁共振分析

背景简介小麦灌浆期叶片的持绿功能期对籽粒产量具有重要意义,是小麦育种专家极为重视的表型特征,目前小麦叶片衰老态势主要通过叶色、绿叶相对面积以及叶绿素荧光等方法来评价前两种方法受观测者的主观感受影响,后者则受太阳辐射等因素影响,且叶室夹具容易对叶片造成损伤低场核磁共振以1H 为探针,可用于探测植物

生物钟在抗衰老中的重要价值

  抵抗衰老,延长健康寿命,一直是医学工作者的最高理想。衰老的本质是长年的损伤积累和机体修复功能的下降,临床表现为代谢病、肿瘤、心血管疾病和神经退行性疾病的高发。  如何才能更有效地抵抗衰老?  最近,Nature 子刊 Nature Communications 在线发表了一篇重磅文章,系统阐述了

遗传发育所水稻叶片衰老机制研究取得进展

  叶片是植物主要的光合器官,是植物生长能量和有机物质的主要来源地。以水稻为例,籽粒灌浆所需营养物质的60%~80%来自叶片光合作用。因此,叶片的功能直接影响作物的最终产量和品质。研究表明,成熟期水稻功能叶片每延迟1天衰老,可增产1%左右。因此,研究叶片细胞死亡的分子机制具有重要的理论和实践意义。 

我国科学家发现水稻叶片衰老死亡原理

  近日中国科学院遗传与发育生物学研究所植物基因组学国家重点实验室储成才课题组发现,一氧化氮(NO)作为信号分子,参与了过氧化氢诱导的水稻叶片细胞死亡。详细的分子、生理及生化分析结果表明:强光条件下,突变体叶片中NO含量的升高和降低,可分别加重和减轻水稻叶片细胞死亡程度。蛋白质亚硝基化(NO最主要的

PlantScreen高通量表型组学平台研究叶片衰老

韩国大邱基础科学研究所Jeongsik Kim、Pyung Ok Lim等,利用PlantScreen大型高通量表型组学研究平台,对植物叶片衰老进行了系列研究(参见论文:Jae IL Lyu etc. 2017. High-throughput and computational study

细胞分裂素对菜豆叶片生长和衰老的效应

实验方法原理 细胞分裂素可以促进幼叶的生长,延缓成熟叶片的衰老,同时有调运营养物质的作用。对菜豆插条的部分叶片进行细胞分裂素的处理即可表现出与未处理叶片生长和衰老速度的明显差异。实验材料 菜豆幼苗仪器、耗材 剪刀烧杯毛笔小尺子实验步骤 一、材料和方法材料设备菜豆幼苗剪刀1把,500  ml 烧杯或广

北大长江特聘教授Plant cell揭示叶片衰老调控机制

  来自北京大学生命科学学院的研究人员在新研究对乙稀信号通路关键转录因子ETHYLENE-INSENSITIVE3 (EIN3)进行了检测,证实EIN3是一个衰老相关基因。在拟南芥中EIN3通过抑制抑制miR164转录加速了年龄相关的叶片衰老。这些研究结果发表在植物学权威期刊The Plan

细胞分裂素对菜豆叶片生长和衰老的效应

实验方法原理细胞分裂素可以促进幼叶的生长,延缓成熟叶片的衰老,同时有调运营养物质的作用。对菜豆插条的部分叶片进行细胞分裂素的处理即可表现出与未处理叶片生长和衰老速度的明显差异。实验材料菜豆幼苗仪器、耗材剪刀烧杯毛笔小尺子实验步骤一、材料和方法材料设备菜豆幼苗剪刀1把,500  ml 烧杯或广口瓶5个

植物叶片中发现天然化合物有抗衰老功效

   根据英国《自然·通讯》杂志19日发表的一篇医学论文,欧洲科学家团队报告称,一种天然化合物经鉴定对酵母、蠕虫和人类培养细胞等具有保护作用,有助延缓其衰老。这是人类在抗衰老药物疗法开发进程中的又一个重要发现。  衰老会让细胞产生特定变化,大部分已知能延长寿命的方法都会激活细胞自噬。细胞自噬是一种循

山东农大李刚团队:叶片衰老新机制整合内外调控因素

  叶片衰老对农作物产量和质量都有着重要影响,但有关调控机制并不清晰。山东农业大学教授李刚团队发现,拟南芥光信号蛋白FHY3通过下游转录因子WRKY28调控叶片衰老,并首次建立了外界光照、植物年龄等因素协同作用下叶片衰老的分子网络,为植物叶片衰老应用提供了理论支撑。近日,《植物细胞》在线发表了这一成

人工智能科学家发现 “衰老时钟”,我们的生物钟可以倒转

  “我从来没有体验过生物钟。我从来没有听到过生物钟的滴答声。“ —— 美国知名影视喜剧明星珍·林奇(Jane Lynch)Insilico Medicine创始人兼首席执行官Alex Zhavoronkov博士  喜剧演员Jane Lynch大可以嘲笑一番生物钟,但对于我们大多数人来说,我们的生物

新疆生地所在荒漠植物叶片衰老的光合生理学研究中获进展

  叶片衰老是落叶植物典型的生理过程,期间伴随着光合器的失活,进而导致光合速率的降低。较多的研究表明,光系统电子传递链功能的丧失,特别是光系统II,是引发光合速率下降的主要原因。目前的研究表明,叶片衰老过程中光强和温度对光合效率起着不同的调节作用。但是,在自然条件下二者与光合活性之间定量关系的研究尚

科学家揭示植物叶片衰老表观遗传学调控新机制

  叶片衰老受到严苛的调控过程,是叶片发育的最后阶段。叶片衰老时,叶绿素、核酸、脂类、蛋白质及其它高分子物质会被分解成营养物质,并会重新分配到生长旺盛的器官或贮存器官中。伴随着叶片年龄的增长,大量叶片衰老相关基因会被诱导表达。研究发现很多叶片衰老相关基因的诱导表达与组蛋白第三亚基四号赖氨酸的三甲基化

武汉植物园揭示褪黑素诱导植物抗逆和抑制叶片衰老的机制

  褪黑激素是迄今发现的最强的内源性自由基清除剂,在动物中其具有促进睡眠、调节时差、抗衰老、调节免疫、抗肿瘤等多项生理功能。近年来研究发现植物中也含有褪黑激素并已经在多种植物中特别是食用和药用植物中检测出来,因此在植物中广泛进行褪黑激素的研究将对人类的营养、医药和农业提供非常有益的信息。  狗牙根(

新发现:植物生物钟调控因子

  为了适应地球自转引起的环境周期性变化,地球上几乎所有的真核生物都进化出了内源计时器——生物钟,它可以维持细胞内近24小时的基因表达节律性以适应环境中光温因子的昼夜动态变化。生物钟参与调控植物体内几乎所有的生长发育和代谢过程,如光周期依赖的开花时间、发育、叶片衰老,以及植物对生物与非生物胁迫的响应

热量限制为何能延缓衰老——让你有一个“年轻”的生物钟

  人们普遍认为,随着时间的推移,干细胞不再能区分昼夜循环,换句话说,它们丧失了生物节律,而这种损失促进了衰老进程。然而,事实并非如此。来自生物医学研究所(IRB巴塞罗那)、庞培法布拉大学(UPF西班牙)和加州大学欧文分校(US)的科学家们在近日发表于Cell上的两项研究中否定了这一假说。研究认为,

遗传发育所在水稻衰老延迟调控研究中取得进展

  褪黑素(Melatonin,化学名:N-乙酰-5-甲氧基色胺),又称松果体素,是人脑中央的松果腺在夜间分泌的一种激素,参与人体多种生理调节过程,包括昼夜节律和光周期反应,因此,常用于调整飞行时差和睡眠失调导致的生物钟紊乱,改善睡眠、治疗神经衰弱等。褪黑素还具有很强的抗氧化能力,可快速清除多种活性

杭师大沈波组:水稻叶片衰老相关定量蛋白质组学分析

  水稻是重要的粮食作物之一,随着人口的增长,人类对大米的需求不断增加。为确保粮食安全,提高水稻生产成为人类的首要任务之一。但是,水稻籽粒的产量往往受到叶片衰老的严重影响。例如,梁优培9号(LYP9)超级杂交稻具有较高的抗病性优势,但对衰老较敏感,常导致水稻产量下降。因此,了解水稻叶片的衰老机制将有

日本科学家发现植物体内各组织的生物钟节律存在差异

  我们知道植物体内也有生物钟。日本科学家在新一期英国《自然》杂志网络版上报告说,他们发现植物体内各组织的生物钟节律存在很大差异。这一发现有助于开发控制植物花期的生长调节剂。  科学界认为,植物的生物钟与动物一样,都是以约24小时为一个周期,但是一直不清楚植物生物钟的机制。  京都大学研究生院助教远

为何要利用叶片厚度计测量叶片厚度?

      不管是从事农业的专业人员还是在城市中生活的普通百姓,我们接触植物的机会都很多,而叶片是植物身上最多的部分,因此我们对于叶片也是十分了解的。一般来说,除了一些多肉植物之外,大部分的植物叶片都是薄薄的,那么这么薄的叶片,为什么还要利用叶片厚度计来测量叶片厚度呢?叶片厚度的测量意义又是什么?通

干细胞节律功能的稳定可延缓衰老,延缓节律功能变化1

                                 干细胞是人体内一种尚未分化的细胞,可分化为多种人体组织器官,以保持人体年轻和维持生命。干细胞具有节律功能,这决定着人类的衰老。关于这点科学家们曾做出研究,认为年龄会影响到这一变化,但近日有学者推翻了这一言论。

概述细胞衰老的衰老机制

  氧自由基学说认为细胞衰老是机体代谢产生的氧自由基对细胞损伤的积累。端粒学说提出细胞染色体端粒缩短的衰老生物钟理论,认为细胞染色体末端特殊结构-端粒的长度决定了细胞的寿命。DNA损伤衰老学说认为细胞衰老是DNA损伤的积累。基因衰老学说认为细胞衰老受衰老相关基因的调控。分子交联学说则认为生物大分子之

叶片厚度计是什么?叶片厚度计还有什么叫法?

叶片厚度计是 什么?叶片厚度计还有什么叫法?是大家对于叶片厚度计比较关心的一些问题。作为植物最重要的一个器官,叶片在植物生长过程中,有非常重要的意义,因此植物 叶片的研究项目也有很多,而叶片厚度计就是其中一款研究植物叶片形态的仪器,其主要作用就是测定植物叶片的厚度,叶片厚度计的其他叫法还有叶片厚度

叶绿素计对樟树正常叶片与黄化叶片的分析

樟树一种常见的四季常青的树种,其树形十分美观,而且具有很强的抗病驱虫能力,对于二氧化硫和臭氧有着十分强烈的抗性。这种树多生长于我国的南方。樟树的生长主要受到温度,光照,降水以及大气湿度等环境因素的影响。杭州滨海地区石灰性土壤 樟树失绿黄化主要是因为土壤pH高,HCO3–浓度高,有机质含量低,从而影响

叶片厚度仪简介

  叶片是植物最重要的器官,其厚度变化可以反映出植物生长状态的变化,如光合作用、水分情况、蒸腾情况、土壤温湿度情况、养分情况等。研究表明,叶片厚度变化具有周期规律性,可分为长周期和短周期(24小时)。掌握这些规律对研究植物水分状态具有重要意义,还可以通过这些规律指导农业节水灌溉。叶片厚度仪是一种测量

叶片泵简介

  叶片泵,是转子槽内的叶片与泵壳(定子环)相接触,将吸入的液体由进油侧压向排油侧的泵。叶片泵转子旋转时,叶片在离心力和压力油的作用下,尖部紧贴在定子内表面上。这样两个叶片与转子和定子内表面所构成的工作容积,先由小到大吸油后再由大到小排油,叶片旋转一周时,完成两次吸油与排油。

植物叶片水势范围

叶片水势(一般以晴天上午7~9时所测结果较为准确)在供水不足时变小,干旱越重,叶片水势越小。玉米在需水临界期前后,若叶片水势降至-0.7~-0.8MPa时,应立即进行灌溉。当叶片水势为-l.OMPa时,叶片出现暂时性萎蔫;叶水势在-1.5MPa时,叶片出现永久性萎蔫,叶水势在-2.4MPa时,可能造

叶片抛光机

  叶片抛光机叶片在加工过程中,由于各种原因,可能会导致叶片余量不均匀,甚至在一件工件上出现余量过厚、过薄的现象,如果用常规的机械进行抛磨,对操作者的人身安全造成危害。叶片抛光机,其组成包括五轴传动机床,所述的五轴传动机床上装有C轴伺服电机和动力头旋转轴,所述的动力头旋转轴5的两端装在支撑上,所述的