Antpedia LOGO WIKI资讯

暴露于砒霜铅铜镉等环境中容易提高患心脏病的风险

最近发表在《BMJ》杂志上的文章提供证据表明暴露在砷,铅,铜和镉的环境中会提高患心血管疾病和冠心病的风险。 近年来,环境中的有毒金属如砷,铅,铜和汞已成为全球主要的健康问题。 例如,砷和镉是已知的致癌物质,但越来越多的人认为接触有毒金属可能是心血管疾病的独立危险因素。 为了进一步调查,由剑桥大学的Rajiv Chowdhury等人审查并分析了流行病学研究的结果,该研究调查了砷,铅,铜,镉,汞与冠心病,中风以及复合心血管疾病的关系。(图片来源:www.pixabay.com) 研究结果表明,砷暴露会造成冠心病相对风险增加23%,复合心血管疾病相对风险增加30%,但没有证据表明与卒中风险有关。 接触镉和铜也与冠心病和心血管疾病的相对风险增加有关(分别为63%和72%)。相反,研究者们没有发现汞与心血管风险的关系。 研究人员指出,他们的评论完全基于观察数据,这些数据可能受到未测量因素的影响,因此难以得出关于因果关系的确......阅读全文

暴露于砒霜 铅 铜 镉等环境中容易提高患心脏病的风险

  最近发表在《BMJ》杂志上的文章提供证据表明暴露在砷,铅,铜和镉的环境中会提高患心血管疾病和冠心病的风险。  近年来,环境中的有毒金属如砷,铅,铜和汞已成为全球主要的健康问题。  例如,砷和镉是已知的致癌物质,但越来越多的人认为接触有毒金属可能是心血管疾病的独立危险因素。  为了进一步调查,由剑

暴露于砒霜、铅、铜、镉等环境中容易提高患心脏病的风险

  最近发表在《BMJ》杂志上的文章提供证据表明暴露在砷,铅,铜和镉的环境中会提高患心血管疾病和冠心病的风险。  近年来,环境中的有毒金属如砷,铅,铜和汞已成为全球主要的健康问题。  例如,砷和镉是已知的致癌物质,但越来越多的人认为接触有毒金属可能是心血管疾病的独立危险因素。  为了进一步调查,由剑

水中铅、镉、铜的测定

 双孔注入连续进样和GFAAS法联用分析 本文采用双孔注入连续进样石墨炉原子吸收光谱法测定某公园湖水和自来水中重金属铅、镉、铜的含量。通过硝酸和过氧化氢消解,以双孔注入法进行测量,峰高模式计算。实验结果表明:铅、镉、铜标准曲线相关系数分别为0.9999、0.9993、0.9994,相对标准偏差(

土壤中镉、铅、铬、铜、锌、镍的测定

农业农村部和生态环境部日前发布《国家土壤环境监测网农产品产地土壤环境监测工作方案》,并针对这一方案回答了记者的提问,这也是为进一步贯彻落实《土壤污染防治法》和《土壤污染防治行动计划》。  土壤是人类生存、兴国安邦的战略资源。随着工业化、城市化、农业集约化的快速发展,大量未经处理的废弃物向土壤系统转移

水和废水检测分析方法铜铅镉石墨炉怎么测定

水和废水检测分析方法铜铅镉石墨炉的检测方法大体相同,但是因为两个里面的成分可能不同,所以检测的时候有微小的区别。所以这个要做详细的成分分析,并且做环境检测和水质检

直接吸入火焰原子吸收法(测定镉、铜、铅、锌)的计算

计算式中:m——从校准曲线上查出或仪器直接读出的被测金属量(μg);V——分析用的水样体积(ml)。精密度和准确度精密度和准确度,如表5 所示。表5   精密度和准确度元素参加实验室数目质控样品金属浓度 (ug/L)平均测定值 (μg/L)实验室内相对标准偏差(%)实验室间相对标准偏差(%)铜710

ICP-MS测定土壤样品中的铜、镍、铬、铅、镉

  1 前言  铜、镍、铬、铅、镉元素与人体健康和生态环境密切相关,也是生态地球化学中重要的调查对象,由于在土壤中含量低,传统分析手段很难实现快速、精确测量。电感耦合等离子体质谱(ICP-MS)是等离子体技术与质谱技术的结合, 以电感耦合等离子为离子源, 以质谱为检测手段, 具有高灵敏度、低检出限、

石墨炉原子吸收法(测定镉、铜和铅)的干扰因素

干扰及消除石墨炉原子吸收分光光度法的基体效应比较显著和复杂。在原子化过程中,样品基体蒸发,在短波长范围出现分子吸收或光散射,产生背景吸收。可以用连续光源背景校正法,或塞曼偏振光校正法、自吸收法进行校正,也可采用邻近的非特征吸收线校正法,或通过样品稀释降低样品中的基体浓度。另一类基体效应是样品中基体参

原子吸收光谱法测定土壤中铜锌铅镉

  1方法土壤中铜锌铅镉的测定   土壤样品常用消解方法有硝酸-氢氟酸-高氯酸分解法、王水-氢氟酸-高氯酸分解法和微波消解法等。实际操作中,对于微波消解方法,微波炉功率和时间选择不当,会导致土样消解不完全的情况呈现。用硝酸.氢氟酸,高氯酸分解法即可得铜锌铅镉的全量分析。进行了一系列实验和对比后发现,

石墨炉原子吸收法(测定镉、铜和铅)的方法原理

将样品注入石墨管,用电加热方式使石墨炉升温,样品蒸发离解形成原子蒸气,对来自光源的特征电磁辐射产生吸收。将测得的样品吸光度和标准吸光度进行比较,确定样品中被测金属的含量。