负超螺旋的结构特点和形成原因
负超螺旋(Negative Supercoiled):通过这种方式,调节了DNA双螺旋本身的结构,松解了扭曲压力,使每个碱基对的旋转减少,甚至可打乱碱基配对。生物体内绝大多数环状DNA是以负超螺旋的形式存在。......阅读全文
负超螺旋的结构特点和形成原因
负超螺旋(Negative Supercoiled):通过这种方式,调节了DNA双螺旋本身的结构,松解了扭曲压力,使每个碱基对的旋转减少,甚至可打乱碱基配对。生物体内绝大多数环状DNA是以负超螺旋的形式存在。
正超螺旋的结构特点和形成原因
正超螺旋:由线性双螺旋分子两端连接起来或因与蛋白质结合而固定的环状DNA分子,进一步扭曲都可形成超螺旋·双螺旋DNA处于拧紧状态时所形成的超螺旋为正超螺旋(左手超螺旋)。
超螺旋的结构特点和主要类型
超螺旋是DNA三级结构的主要形式,由双螺旋DNA进一步扭曲盘绕而形成。超螺旋按其扭曲方向分两种类型:与DNA双螺旋的旋转方向相同的扭转称为正超螺旋;反之称为负超螺旋。研究发现,所有的DNA超螺旋都可由DNA拓扑异构酶消除。正超螺旋和负超螺旋两种。真核生物中,DNA与组蛋白八聚体形成核小体结构时,存在
超螺旋的结构特点
超螺旋,DNA双螺旋本身进一步盘绕称超螺旋,超螺旋有正超螺旋和负超螺旋两种。当盘旋方向与DNA双螺旋方向相同时,其超螺旋结构为正超螺旋,反之则为负超螺旋,负超螺旋的存在对于转录和复制都是必要的。
超螺旋的结构特点
超螺旋是DNA三级结构的主要形式,由双螺旋DNA进一步扭曲盘绕而形成。超螺旋按其扭曲方向分两种类型:与DNA双螺旋的旋转方向相同的扭转称为正超螺旋;反之称为负超螺旋。研究发现,所有的DNA超螺旋都可由DNA拓扑异构酶消除。正超螺旋和负超螺旋两种。真核生物中,DNA与组蛋白八聚体形成核小体结构时,存在
DNA超螺旋的结构特点
由于双螺旋DNA的弯曲,正超螺旋或负超螺旋而造成的DNA分子的进一步扭曲所形成的DNA的三级结构。有两种:当DNA分子沿轴扭转的方向与通常双螺旋的方向相反时,造成双螺旋的欠旋而形成负超螺旋;方向相同时则形成正超螺旋。生物体内一般以负超螺旋结构存在。
负超螺旋DNA的定义
中文名称负超螺旋DNA英文名称negatively supercoiled DNA定 义具有负超螺旋结构的环状或双链DNA。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)
负超螺旋化的定义
中文名称负超螺旋化英文名称negative supercoiling定 义生成负超螺旋的过程。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)
细胞化学词汇负超螺旋
中文名称:负超螺旋外文名称:Negative Supercoiled类 别:生物学定 义:负超螺旋,指顺时针右手螺旋的DNA双螺旋以相反方向绕它的轴扭转而成。
细胞化学词汇负超螺旋化
中文名称:负超螺旋化英文名称:negative supercoiling定 义:生成负超螺旋的过程。应用学科:生物化学与分子生物学(一级学科),核酸与基因(二级学科)
细胞化学词汇负超螺旋DNA
中文名称:负超螺旋DNA英文名称:negatively supercoiled DNA定 义:具有负超螺旋结构的环状或双链DNA。应用学科:生物化学与分子生物学(一级学科),核酸与基因(二级学科)
原肠胚的特点和原肠腔形成的原因
细胞分化——以高等动物为例,受精卵卵裂进行到一定时间细胞增多,形成了一个内部有腔的球状胚,这个时期的胚叫囊胚。这时期的胚其特点是中央有一空腔,叫囊胚腔。胚继续发育形成原肠胚。由于动物极一端的细胞分裂较快,新产生的细胞便向植物极方向推移、使植物极一端的细胞向囊胚腔陷入,囊胚腔缩小,内陷的细胞不仅构成了
关于超螺旋DNA的结构介绍
由于具有螺旋结构的双链各自闭合,结果使整个DNA分子进一步旋曲而形成三级结构。自然界中主要是负超螺旋.另外如果一条或二条链的不同部位上产生一个断口,就会成为无旋曲的开环DNA分子。从细胞中提取出来的质粒或病毒DNA都含有闭环和开环这二种分子。可根据两者与色素结合能力的不同,而将两者分离开来。
负协调性的概念和特点
负协同(negative cooperativity)又称负协调性。在酶结构与作用机制的研究中,发现有些由相同亚基组成的寡聚酶,当一个亚基与底物分子牢固结合时,另一个亚基对底物的亲和力降低。
负调控的定义和作用特点
负调控,通过阻遏蛋白进行的调控。定义:转录、翻译或信号转导的调控过程被一些因子(如阻遏蛋白)所阻遏的调节方式。可使基因表达水平下降以及基因产物(RNA或蛋白质)的数量减少。
尘暴原理和形成原因
尘暴(dust storm),是大风把大量尘埃及其它细粒物质卷入高空所形成的风暴。大量尘土沙粒被强劲阵风或大风吹起,飞扬于空中而使空气混浊、水平能见度小于1公里的现象,又称沙暴,其带来的后果则是无尽的漫天飞沙,已逐渐变成了世界上常见的自然灾害之一。中国新疆南部和河西走廊的强沙暴,有时可使能见度接
出现负峰的原因
有可能是你们的流动相用的甲醇不好,甲醇里有强紫外吸收物质,所以会有负峰有时流动相与配样溶剂不一样也会引起负峰流动相和样品的溶剂不一样,样品中的杂质没有紫处吸收或吸收很小,而流动相紫外吸收大,如用甲醇时波长设定在220nm以下时,常出现这种现象.
极体的形成原因和过程
不均等分裂导致大小不同的细胞产生,此处最终能够发育成为卵细胞的细胞体积大,细胞质含量多,而细胞体积小细胞质含量少的细胞被称为极体,其名称来源是初形成的极体位于卵的动物极。这里可以采用反推法,如果进行均等分裂,那么两个细胞得到的细胞质含量以及营养物质含量应该是一致的,也就是说二者不存在体积上的差异同时
合核体的概念和形成原因
合核体指通过细胞杂交形成的单核子细胞,一个核中含有来自两个不同亲本染色体。多个细胞融合可形成一个双核或多核的融合细胞,基因型相同的细胞形成的融合细胞称为同核体(homokaryon),基因型不同的则称为异核体(heterokaryon)。合核体(synkaryon)可由双核同核体中两个核的同步有丝分
异核体的概念和形成原因
异核体(heterokaryon):两不同GT,体细胞融合,形成同时含有两个细胞核的细胞称异核体。当带有不同遗传性状的两个单倍体细胞或菌丝相互融合时,会导致在一个细胞或菌丝中并存有两种以上不同遗传型的核,这样的细胞或菌丝就叫异核体。这种由菌丝融合导致形成异核体的现象叫异核现象。
肽键的形成结构和原理
肽键具有特殊性质。从键长看,肽键键长(0.132nm)介于C—N单键(0.146nm)和双键(0.124mm)之间,具有部分双键的性质,不能自由旋转;从键角看,肽键中键与键的夹角均为120°。因此,与肽键相连的6个原子(Cn、C、O、N、H、Ca)始终处在同一平面上,构成刚性的“肽键平面”,又称“酰
晶体线缺陷的定义和形成原因
实际晶体在结晶时,受到杂质,温度变化或振动产生的应力作用或晶体由于受到打击,切割等机械应力作用,使晶体内部质点排列变形,原子行列间相互滑移,不再符合理想晶体的有序排列,形成线状缺陷。位错直观定义:晶体中已滑移面与未滑移面的边界线。这种线缺陷又称位错,注意:位错不是一条几何线,而是一个有一定宽度的管道
角质形成细胞的结构和功能
角质形成细胞是表皮的主要构成细胞,数量占表皮细胞的80%以上,在分化过程中产生角蛋白。根据分化阶段和特点可分为五层,由内至外分别为基底层、棘层、颗粒层、透明层和角质层。
极体的定义和形成特点
极体是指一个大型的单倍体卵细胞和2~3个小型的细胞。当第一次成熟(减数)分裂时,形成一个大的次级卵母细胞和一个小的第一极体;第二次成熟分裂时,同样产生一个小的第二极体。第一极体通常分裂形成两个极体。初形成的极体位于卵的动物极,极体内细胞质极少,缺乏营养物质,很快即退化消失,从而保证卵细胞内大量胞质的
电镜的球差和畸变及其形成原因
1、球差:由于电子束光源通过透镜受到偏转,通过样品,从物平面向下发射,形成物点孔径角。从物点发出的射线,到达下一级透镜又被聚集。如果透镜有缺陷或孔径角太大,则靠近光轴的射线和远离光轴的射线,受到电磁场的作用就会不同,这些射线在光轴上会聚的位置不同,结果远离光轴的射线就会在像面上形成一个最小模糊圈。此
液相负峰产生的原因
有可能是你们的流动相用的甲醇不好,甲醇里有强紫外吸收物质,所以会有负峰有时流动相与配样溶剂不一样也会引起负峰流动相和样品的溶剂不一样,样品中的杂质没有紫处吸收或吸收很小,而流动相紫外吸收大,如用甲醇时波长设定在220nm以下时,常出现这种现象.
液相负峰产生的原因
有可能是你们的流动相用的甲醇不好,甲醇里有强紫外吸收物质,所以会有负峰有时流动相与配样溶剂不一样也会引起负峰流动相和样品的溶剂不一样,样品中的杂质没有紫处吸收或吸收很小,而流动相紫外吸收大,如用甲醇时波长设定在220nm以下时,常出现这种现象.
液相负峰产生的原因
有可能是你们的流动相用的甲醇不好,甲醇里有强紫外吸收物质,所以会有负峰有时流动相与配样溶剂不一样也会引起负峰流动相和样品的溶剂不一样,样品中的杂质没有紫处吸收或吸收很小,而流动相紫外吸收大,如用甲醇时波长设定在220nm以下时,常出现这种现象.
液相负峰产生的原因
有可能是你们的流动相用的甲醇不好,甲醇里有强紫外吸收物质,所以会有负峰有时流动相与配样溶剂不一样也会引起负峰流动相和样品的溶剂不一样,样品中的杂质没有紫处吸收或吸收很小,而流动相紫外吸收大,如用甲醇时波长设定在220nm以下时,常出现这种现象.
血脂的形成原因
人体内血脂的来源有两种途径,即内源性和外源性。内源性血脂是指在人体的肝脏、脂肪等组织细胞中合成的血脂成分;外源性血脂是指由食物中摄入的血脂成分。具体来说,内源性血脂是指通过人体自身分泌、合成的一类血清脂类物质。内源性血脂先经过肝脏、脂肪细胞,并与细胞结合后释放到血液中,便可成为供给人体新陈代谢和