Antpedia LOGO WIKI资讯

保证可靠性单片机系统的电磁兼容性设计详解

随着单片机系统越来越广泛地应用于消费类电子、医疗、工业自动化、智能化仪器仪表、航空航天等各领域,单片机系统面临着电磁干扰(EMI)日益严重的威胁。电磁兼容性(EMC)包含系统的发射和敏感度两方面的问题。如果一个单片机系统符合下面三个条件,则该系统是电磁兼容的: ① 对其它系统不产生干扰; ② 对其它系统的发射不敏感; ③ 对系统本身不产生干扰。 假若干扰不能完全消除,但也要使干扰减少到最小。干扰的产生不是直接的(通过导体、公共阻抗耦合等),就是间接的(通过串扰或辐射耦合)。电磁干扰的产生是通过导体和通过辐射,很多电磁发射源,如光照、继电器、DC电机和日光灯都可引起干扰;AC电源线、互连电缆、金属电缆和子系统的内部电路也都可能产生辐射或接收到不希望的信号。在高速单片机系统中,时钟电路通常是宽带噪声的最大产生源,这些电路可产生高达300 MHz的谐波失真,在系统中应该把它们去掉。另外,在单片机系统中,最容易受影响的是复位......阅读全文

保证可靠性 单片机系统的电磁兼容性设计详解

随着单片机系统越来越广泛地应用于消费类电子、医疗、工业自动化、智能化仪器仪表、航空航天等各领域,单片机系统面临着电磁干扰(EMI)日益严重的威胁。电磁兼容性(EMC)包含系统的发射和敏感度两方面的问题。如果一个单片机系统符合下面三个条件,则该系统是电磁兼容的:  ① 对其它系统不产生干扰;  ② 对

单片机设计过程中如何处理电磁兼容性问题

对于新手来说,在单片机的电路设计中可能不会很注意电路设计中电磁干扰对设计本身的输入输出的影响,但是对于一个电子工程师来说其中的厉害关系就不言而喻了,它不仅关系了单片机在控制在中的能力和准确度,还关系到企业在行业中的竞争。对电磁干扰的设计我们主要从硬件和软件方面进行设计处理,下面就是从单片机的

PCB设计中的电磁兼容性考虑(二)

PCB设计的EMC考虑对于高速PCB(Printed Circuit Board,印制电路板)设计中EMI问题,通常有两种方法解决:一种是抑制EMI的影响,另一种是屏蔽EMI的影响。这两种方式有很多不同的表现形式,特别是屏蔽系统使得EMI影响电子产品的可能性降到了最低。射频(RF)能量是由印制电路板

PCB设计中的电磁兼容性考虑(四)

(3)传输线效应以及终端匹配传输线就是一个适合在两个或多个终端间有效传播电功率或电信号的传输系统,如金属导线、波导、同轴电缆和PCB走线。如果传输线终端不匹配,或者信号在阻抗不连续的PCB走线上传送,电路就会出现功能性问题和EMI干扰,这包括电压下降、冲击激励产生的振荡等。在处理传输线效应过程中,线

PCB设计中的电磁兼容性考虑(三)

三、 电磁兼容的合理PCB设计随着系统设计复杂性和集成度的大规模提高,电子系统设计师们正在从事100MHZ以上的电路设计,总线的工作频率也已经达到或者超过50MHZ,有的甚至超过100MHZ。当系统工作在50MHz时,将产生传输线效应和信号的完整性问题;而当系统时钟达到120MHz时,除非使用高速电

PCB设计中的电磁兼容性考虑(一)

电磁兼容的一般概念考虑电磁兼容的根本原因在于电磁干扰的存在。电磁干扰(Electromagnetic Interference,简称EMI)是破坏性电磁能从一个电子设备通过辐射或传导传到另一个电子设备的过程。一般来说,EMI特指射频信号(RF),但电磁干扰可以在所有的频率范围内发生。电磁兼容性(El

深度剖析电磁兼容性原理、方法及设计(二)

屏蔽体材料选择的原则是:(1)当干扰电磁场的频率较高时,利用低电阻率(高电导率)的金属材料中产生的涡流(P=I2R,电阻率越低(电导率越高),消耗的功率越大),形成对外来电磁波的抵消作用,从而达到屏蔽的效果。(2)当干扰电磁波的频率较低时,要采用高导磁率的材料,从而使磁力线限制在屏蔽体内部,防止扩散

深度剖析电磁兼容性原理、方法及设计(三)

2.5滤波主要考虑(1)抑制工作频带以外的干扰;(2)在信号电路中用吸收滤波器消除无用的频谱成分;(3)在电源电路(尤其是开关电源中),操纵电路,控制电路,以及转换电路中消除产生的干扰。在工程实际中,一个最值得注意的地方是电源滤波器的安装,常见的滤波器的错误安装如图2所示。2.6电子设备的空间位置由

深度剖析电磁兼容性原理、方法及设计(一)

什么是电磁兼容电磁兼容性(EMC)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。因此,EMC包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值;另一方面是指器具对所在环境中存在的电磁干扰具有一定程度的抗扰度,即

某星载应答机电磁兼容性设计案例(二)

(2)结构件间接缝的屏蔽一般情况下,结构件不同部分的结合处不可能完全接触,只能在某些点接触,这就构成了一个孔洞阵列。缝隙是造成机箱屏蔽效能降低的主要原因之一。机箱采用导电性能良好的铝合金材料加工而成,机箱与上、下盖板的接缝均为狭长缝,它们是电磁泄漏的主要通道。为了提高屏蔽效能,必须尽可能消除或减小缝