荧光光谱测量解决方案

激发光与物质作用,产生与激发光不同波长、或者不同频率的光,这就是荧光。当一个短波长的激发光在一点激发物质,我们就能在物质发散的其他位置观察到比激发光更长波长的光。 当某种物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,并且立即退激发并发出比入射光的的波长长的出射光(通常波长在可见光波段);而且一旦停止入射光,发光现象也随之立即消失。 光照射到某些原子时,光的能量使原子核周围的一些电子由原来的轨道跃迁到了能量更高的轨道,即从基态跃迁到第一激发单线态或第二激发单线态等。第一激发单线态或第二激发单线态等是不稳定的,所以会恢复基态,当电子由第一激发单线态恢复到基态时,能量会以光的形式释放,所以产生荧光。 荧光测量 荧光激发光谱可以通过有效的荧光激发波长来展示,并能看出荧光转化效率。大多数情况下,激发波长和物质的发射波长会发生重叠,但是如果非常了解荧光机理,不难判断出长波为荧光发射波长......阅读全文

荧光光谱测量解决方案

  激发光与物质作用,产生与激发光不同波长、或者不同频率的光,这就是荧光。当一个短波长的激发光在一点激发物质,我们就能在物质发散的其他位置观察到比激发光更长波长的光。   当某种物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,并且立即退激发并发出比入射光的的波长长的出射光

荧光光谱测量解决方案

激发光与物质作用,产生与激发光不同波长、或者不同频率的光,这就是荧光。当一个短波长的激发光在一点激发物质,我们就能在物质发散的其他位置观察到比激发光更长波长的光。当某种物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,并且立即退激发并发出比入射光的的波长长的出射光

荧光谱测量

某些物质受到电磁辐射而激发时,它们能重新发射出相同或较长波长的光。这种现象称为光致发光,荧光是光致发光现象中最常见的类型。如果停止照射,则荧光很快(

WaveGo-手持光谱测量系统

WaveGo作为光源光谱测量的理想应用工具,可使用简单的测试方法获得精准的测量结果。通过Android系统的指定App应用,可以对照明光源进行有效参数的测量,另外还可以通过云服务将测试的光谱数据与使用者Wave账户进行连接通讯。得益于海洋光学在科学分析领域的众多解决方案,搭配Androi

最精准的光谱测量-反物质光谱测量精度达万亿分之二

  英国《自然》杂志近日发表一项粒子物理学研究成果:欧洲核子研究中心(CERN)科学家完成了到目前为止对反物质的最精准光谱测量。此次测量结果不仅证明了反原子光谱学的能力,也将反物质的高精度检测向前推进了一大步。图片来源于网络   当代物理学家们面临的一个巨大挑战,就是解释为何是物质而不是反物质在宇宙

紫外/可见吸收光谱测量

荷兰Avantes公司突破了传统分光光度计采用转动光栅进行光谱扫描的技术,使用2048像素CCD阵列探测器和平面衍射光栅,实现了不必转动光栅而对整个光谱的快速测量,每秒可实现900幅光谱的超高速采样,保证了测量的准确性和重复性,同时搭配浸入式光纤探头或流通池进行取样,从而适用于野外测量、应急检测、在

紫外/可见吸收光谱测量

荷兰Avantes公司突破了传统分光光度计采用转动光栅进行光谱扫描的技术,使用2048像素CCD阵列探测器和平面衍射光栅,实现了不必转动光栅而对整个光谱的快速测量,每秒可实现900幅光谱的超高速采样,保证了测量的准确性和重复性,同时搭配浸入式光纤探头或流通池进行取样,从而适用于野外测量、应急检测、在

显微光谱测量系统解析

概述                  显微光谱测量系统,即微区光谱系统或显微分光光度计,在显微镜的基础之上增了光谱分析的功能。能够实现微米级样品的反射光谱、透射光谱、荧光光谱、拉曼光谱等光谱分析。                                 引言             

EXAKT白光LED荧光胶分散解决方案

一、白光LED行业背景  人类历史上使用的照明光源,第一代是油灯(蜡烛),第二代是爱迪生发明的白炽灯,第三代是荧光灯,现在人们充满期待的是第四代光源-白色LED。                         LED(Light Emitting Diode)作为新一代半导体照明光源,以其高效低耗

紫外/可见吸收光谱测量配件

附件齐全 耐腐蚀型光纤探头可用于在线测量,探头末端浸入到液体中即可测量,光程可调(0.5-20mm)。不同光程的流通池:5mm、10mm和20mm;微型流通池(光程/容量):1.5 mm / 3 ul,10 mm / 18 ul;带温控的微型HPLC流通池,控温范围10-40°C ± 0.1

植物光谱测量仪的优点

LI-180 植物光谱测量仪配备高精度线性图像传感器,只需一键即可捕获以上五个波段光在1纳米精度级的强度和成分。可以用于优化人工补光的波长组成,长期跟踪照明设备的光谱数据,验证光源和补光方案的效果,监控照光系统的老化,并根据季节变化调整方案或升级系统。植物光谱测量仪主要优点:1、图形图表输出,结果直

紫外/可见吸收光谱测量特点

主要特点:1.高性价比 广泛应用于无机化学、生物化学、药品分析、食品检验、环境保护、生命科学等领域。2.低杂散光、高稳定性 革命性优化设计的光学平台,带有两个光阑和多个光陷阱,实现了0.04%的超低杂散光。新型的光学平台在改善杂散光的同时,机械刚性也大大提高,使得光谱仪受微弯曲和温度漂移的影响降低了

AvaLIBS激光诱导击穿光谱测量系统

AvaLIBS激光诱导击穿光谱测量系统,可以对固体、液体、气体中元素做快速定性定量分析。AvaLIBS的光谱分析范围是200-1070 nm,光学分辨率0.1nm(FWHM),检测灵敏度达到ppm级。 特点: ● 宽光谱,高分辨率光谱分析(波长范围200-1050 nm

反物质原子光谱测量首次完成

  英国《自然》杂志19日在线发表了一项粒子物理学重大进展:欧洲核子研究中心(CERN)报告了对反物质原子的首次光谱测量,实现了反物质物理学研究长期以来的一个目标。该成果标志着人类向高精度测试物质与反物质行为是否不同迈进了重要一步。  当今宇宙为何看起来几乎全由普通物质构成,这是物理学界的一个重大谜

无人机光谱测量系统的应用

 2016年10月,中国地质大学(武汉)与点将科技合作,引进一套无人机光谱测量系统。10月17日,点将科技工程师为用户进行仪器操作培训,演示无人机搭载多通道光谱相机的飞行控制、拍照控制、图像处理等,现场有10多位师生学习,对该无人机光谱测量系统表示一致认可,项目顺利通过验收。 无人机光谱测量系统在工

AvaLIBS激光诱导击穿光谱测量系统

AvaLIBS激光诱导击穿光谱测量系统 AvaLIBS激光诱导击穿光谱测量系统,可以对固体、液体、气体中元素做快速定性定量分析。AvaLIBS的光谱分析范围是200-1070 nm,光学分辨率0.1nm(FWHM),检测灵敏度达到ppm级。特点 :● 宽光谱,高分辨率光谱分析(波长范围200-107

荧光定量pcr常见问题的原因与解决方案

1.扩增产物大小不合适:实时荧光定量PCR扩增片段的长度通常在80-150 bp之间,如果调整反应的时间有可能扩增500bp的片段。    2.PCR反应过程中退火及延伸的时间过短或过长:应根据扩增片段的大小予与调整。    3.MgCl,浓度不合适:按0. 5mm的间距调整MgCI2的浓度。   

反物质原子的首次光谱测量完成

Nature杂志19日在线发表了一项粒子物理学重大进展:欧洲核子研究中心(CERN)报告了对反物质原子的首次光谱测量,实现了反物质物理学研究长期以来的一个目标。该成果标志着人类向高精度测试物质与反物质行为是否不同迈进了重要一步。当今宇宙为何看起来几乎全由普通物质构成,这是物理学界的一个重大谜题。因为

AvaLIBS激光诱导击穿光谱测量系统原理

AvaLIBS工作原理 激光诱导等离子光谱(LIPS)或者更常见的叫法激光诱导击穿光谱(LIBS)是一种原子发射光谱,它使用脉冲激光器作为激发源。激光脉冲(典型值10 ns)聚焦到被测物体的表面,使被测材料表面的激光功率密度超过1 GW/cm2。在如此之高的激光功率密度作用下,被测材料表面就

材料荧光镀层厚度测量仪技术质量对应解决方案

  在材料件上镀上金属层可以使材料的质量和价值得到很大的提升,而荧光镀层厚度测量仪技术上镀材料作为工程中的物资基础,其质量优劣对工程质量有着不可忽视的作用,因此材料行业能否稳定有序地健康发展,对工程质量的提升有着非常重要的作用。对于目前市场上出现的以次充好、欺瞒的行为,政府管理部门必将严格管理,严

紫外/可见吸收光谱测量高扩展性

高扩展性主机提供USB2.0和RS-232接口,可连接电脑。26针I/O接口,提供2路模拟输入、2路模拟输出、3路数字输入、12路数字输出、触发和同步,可与其它设备进行通讯及外部控制,用户可以在AvaSoft-PROC过程控制应用软件中为8个时间序列函数定义最大和最小阈值,当测量值超出设定的阈值,光

乙酰乙酸乙酯紫外光谱测量波长

正己烷乙酰乙酸乙酯微溶于水,应该不会用于有机物测定,并且水等在真空紫外区(60 ~ 200 nm)均有吸收,因此在测定这一范围的光谱时,必须将光学系统抽成真空,然后充以一些惰性气体,如氦、氖、氩等。鉴于真空紫外吸收光谱的研究需要昂贵的真空紫外分光光度计,故在实际应用中受到一定的限制。我们通常所说的紫

Analytica-2016:BaySpec展出主打拉曼光谱解决方案

  分析测试百科网讯 在2016年5月10-13日举办的慕尼黑展会上,BaySpec展出其最新的光谱传感解决方案。主打产品包括Agility拉曼光谱仪、OEM拉曼解决方案、SuperGamut紫外到短波红外光谱仪。  Agility双波段便携式拉曼光谱仪使用户可以测量“现实世界”中具有挑战

AvaLIBS激光诱导击穿光谱测量系统技术参数

技术数据 光谱范围 * 200-1070 nm 分辨率(FWHM) 0.1 nm 探测器 CCD,每通道2048像元 积分时间 1.1毫秒-10分钟 触发延迟 -20纳秒-89秒,步长21纳秒 触发

光谱仪在野外光谱测量中的应用

 在遥感领域中,为了研究各种不同地物或环境在野外自然条件下的可见和近红外波段反射光谱,需要适用于野外测量的光谱仪器。对野外地物光谱进行测量,我们使用的是美国ASD公司FieldSpec?誖HandHeld手持便携式光谱分析仪。其主要技术指标为:波长范围为300~1100nm,光谱采样间隔为1.6nm

光谱仪在野外光谱测量中的应用

在遥感领域中,为了研究各种不同地物或环境在野外自然条件下的可见和近红外波段反射光谱,需要适用于野外测量的光谱仪器。对野外地物光谱进行测量,我们使用的是手持便携式光谱分析仪。其主要技术指标为:波长范围为300~1100nm,光谱采样间隔为1.6nm,灵敏度线性:±1%。手持便携式光谱分析仪可用于户外目

红外光谱测量在污水处理方面应用

 污水处理过程的监视与控制系统由模型、传感器、局部调节器和上位监控策略等4个部分组成。其中,传感器是污水处理厂监控系统中zui薄弱,也是zui重要、zui基础的环节。日益严格的污水排放标准导致了污水处理工艺流程和装备的复杂化,对用于污水处理过程监视与控制的传感器的性能也提出了更高的要求,促进了污水处

便携式X射线荧光光谱仪应用条件试验及效果

利用IED2000P型便携式X射线荧光光谱仪,选择安徽绩溪荆州银多金属矿矿区进行找矿条件试验。试验中分别就不同测点密度、基岩与土壤测量、不同湿度条件、基岩与岩石粉末样测量进行了对比研究,确定了最佳的应用条件。即:确定测点密度应综合考虑异常体规模和实际工作量因素;基岩X荧光光谱测量较之土壤测量更能客观

MS-|-显微光谱

显微光谱系统    选用全球最好的 Semrock 滤光片组,创造性地将激发光、荧光和滤光片集成在一个探头之中。同时,配合闻奕光电的微区探头耦合模块,能将荧光光谱测量的空间分辨率提高至 5μm。显微光谱系统,顾名思义即显微镜系统与光谱仪系统联用,既有显微镜成像的功能,又有光谱分析的功能。该系统可

原子吸收及原子荧光在土壤监测中的应用解决方案

前 言在“气十条”和“水十条”相继出台后,经过三年的等待,“土十条”终于落地,近年来,由于我国经济发展方式总体粗放,产业结构和布局仍不尽合理,污染物排放总量较高,土壤作为大部分污染物的最终受体,其环境质量受到显著影响。当前,我国土壤环境总体状况堪忧,部分地区污染较为严重,通知提出,到2020年,全国