物理所提出面向激光聚变能量的新型快点火方案

相对于传统的中心点火方案,快点火方案有望大幅降低驱动激光的能量,进而更易获得激光聚变能量,因此自从该方案20年前被提出以来,受到了世界范围的广泛关注。快点火方案中,首先通过激光-等离子体相互作用,把一束约10千焦耳、10皮秒的超强拍瓦点火激光转化成兆电子伏特的电子束,电子束在高密度等离子体中传输百微米的距离后,到达预压缩聚变靶丸的中心区域,加热此区域从而实现点火。由于拍瓦激光产生的电子束发散角较大,所以只有很少一部分电子能最终到达靶中心。2001年人们提出,在靶内插入一个中空的金属锥,让电子束在距靶中心更近的地方产生,从而能部分地克服电子束大发散角的问题。这一改进方案已经在实验中用0.6皮秒的点火激光进行了演示,结果表明~20%的激光能量转换到了靶中心【Nature 412, 798】。但是,最近在美国OMEGA激光装置上利用10皮秒的点火激光进行的类似实验中,仅观测到~3%的能量转换效率。这些实验结果表现出的巨大差异,已经......阅读全文

自由电子激光器简介

  自由电子激光器(FEL)是一类不同于传统激光器的新型高功率相干辐射光源.虽然传统的激光器具有极好的单色性和相干性,但它的低功率、低效率、固定频率和光束质量差的弱点, 使它大大逊色于自由电子激光器.自由电子激光器不需要气体、液体或固体作为工作物质, 而是将高能电子束的动能直接转换成相干辐射能.因此

自由电子激光器概述

  一种利用自由电子的受激辐射,把相对论电子束的能量转换成相干辐射的激光器件。自由电子受激辐射的设想曾于1950年由Motz提出,并在1953年进行过实验,因受当时条件的限制,未能得到证实。1971年斯坦福大学的Madey等人重新提出了恒定横向周期磁场中的场致受激辐射理论,并首次在毫米波段实现了受激

自由电子激光的物理原理

自由电子激光的物理原理是利用通过周期性摆动磁场的高速电子束和光辐射场之间的相互作用,使电子的动能传递给光辐射而使其辐射强度增大。利用这一基本思想而设计的激光器称为自由电子激光器(简称FEL)。如图1所示,一组扭摆磁铁可以沿z轴方向产生周期性变化的磁场.磁场的方向沿Y轴。由加速器提供的高速电子束经偏转

阿秒激光:为“狂飙”的电子摄影

  皮埃尔·阿戈斯蒂尼(左)、费伦茨·克劳斯(中)和安妮·吕利耶(右)因“用实验方法产生了可用于研究物质中的电子动力学的阿秒量级光脉冲”而获得2023年诺贝尔物理学奖  就像我们用光来观察周围的宏观世界一样,我们也可以用光来探测亚原子世界。但必须遵守一个原则:任何测量都必须快于被研究系统发生明显变化

自由电子激光器的应用

由于自由电子激光器具有许多一般激光器望尘莫及的优点, 所以自由电子激光器问世后不久,科学家们就开始着手于研究它的应用问题.自由电子激光特别适宜于研究光与原子、分子和凝固态物质的相互作用, 这类研究涉及到固体表面物理、半导体物理、超导体、凝聚态物理、化学、光谱学、非线性光学、生物学、医学、材料、能源、

什么是X射线自由电子激光?

X射线自由电子激光(X-ray free electron laser, XFEL)是由直线加速器产生的X射线。XFEL是直线加速器中的电子束加速至接近光速,成为相对论电子,在波荡器作用下产生正弦运动路径,在运动轨迹切线方向产生同步辐射光,同步辐射光与电子束运动周期相同,于是得到相干叠加的光场,这种

自由电子激光装置可大幅“瘦身”

  记者从中国科学院上海光学精密机械研究所获悉:强场激光物理国家重点实验室利用自行研制的超强超短激光装置,在国际上率先完成台式化自由电子激光原理的实验验证,对于发展小型化、低成本的自由电子激光器具有里程碑意义,相关研究成果于7月22日作为封面文章发表于国际学术期刊《自然》杂志。  X射线自由电子激光

自由电子激光器的应用

由于自由电子激光器具有许多一般激光器望尘莫及的优点, 所以自由电子激光器问世后不久,科学家们就开始着手于研究它的应用问题.自由电子激光特别适宜于研究光与原子、分子和凝固态物质的相互作用, 这类研究涉及到固体表面物理、半导体物理、超导体、凝聚态物理、化学、光谱学、非线性光学、生物学、医学、材料、能源、

自由电子激光器的应用

自由电子激光器在短波长、大功率、高效率和波长可调节这四大主攻方向上,为激光学科的研究开辟了一条新途径,它可望用于对凝聚态物理学、材料特征、激光武器、激光反导弹、雷达、激光聚变、等离子体诊断、表面特性、非线性以及瞬态现象的研究,在通讯、激光推进器、光谱学、激光分子化学、光化学、同位素分离、遥感等领域,

用超快激光“抓拍”运动中电子

相关论文在线发表于《科学》杂志 图片说明:一束激光首先刺激N2O4分子,诱导产生大的振动。第二束激光从振动的分子产生了X光。(图片来源:phyorg网站) 美国和加拿大的科学家日前找到观测分子的新方法——超快激光,以观察当分子形态变化时其电子如何重新分布。相关论文10月30日在线

“欧洲X射线自由电子激光”项目动工

  位于德国汉堡的“欧洲X射线自由电子激光”项目的核心工程——3条地下隧道30日正式动工,预计2014年完工,2015年可进行首次科研实验。   据德国媒体报道,欧洲X射线自由电子激光设施是世界上首个能产生高强度短脉冲X射线的激光设施。这一大型科研项目由德国牵头,欧洲11个国家共同

专家聚焦“硬X射线自由电子激光”

  以“紧凑型硬X射线自由电子激光装置与应用”为主题的S23次香山科学会议日前在上海召开,杨国帧等6位院士和多位来自中国科学院,国内高等院校以及美国斯坦福大学、布鲁克海文国家实验室和欧洲X射线自由电子激光等国际国内的专家学者与会。  中国科学院物理所的杨国帧院士作了X射线自由电子激光,在科技上重要意

自由电子激光器的工作原理

自由电子激光的物理原理是利用通过周期性摆动磁场的高速电子束和光辐射场之间的相互作用,使电子的动能传递给光辐射而使其辐射强度增大。利用这一基本思想而设计的激光器称为自由电子激光器(简称FEL)。如图1所示,一组扭摆磁铁可以沿z轴方向产生周期性变化的磁场.磁场的方向沿Y轴。由加速器提供的高速电子束经偏转

强激光实验首次证明光可阻碍电子

  据物理学家组织网7日报道,英国团队用超强激光照射电子,首次在实验室展示了光让电子速度减慢的辐射反应,这揭示了超越经典物理的动力学,并暗示量子效应的存在,有助于科学家更好地理解宇宙内某些最极端环境中发生的现象以及量子电动力学。  当光线照射一个物体时,一些光会从物体表面散射回来,但如果物体移动速度

自由电子激光器的功能介绍

自由电子激光器(FEL)是一类不同于传统激光器的新型高功率相干辐射光源.虽然传统的激光器具有极好的单色性和相干性, 但它的低功率、低效率、固定频率和光束质量差的弱点, 使它大大逊色于自由电子激光器。自由电子激光器不需要气体、液体或固体作为工作物质, 而是将高能电子束的动能直接转换成相干辐射能.因此,

透过消费电子风口看超快激光加工,值得了解的激光企业

透过消费电子风口看超快激光加工,这些激光企业你值得深入了解 2020华南先进激光及加工应用技术展览会将于11月3-5日在深圳国际会展中心(宝安新馆)举行,展会将发掘激光在PCB、锂电、消费电子、微电子、医疗等领域的应用,旨在带给观众更新、更精致的激光应用交流平台。此前,镭Sir为大家讲解过激光在PC

自由电子激光器的发展前景

  自由电子激光器在短波长、大功率、高效率和波长可调节这四大主攻方向上,为激光学科的研究开辟了一条新途径,它可望用于对凝聚态物理学、材料特征、激光武器、激光反导弹、雷达、激光聚变、等离子体诊断、表面特性、非线性以及瞬态现象的研究,在通讯、激光推进器、光谱学、激光分子化学、光化学、同位素分离、遥感等领

自由电子激光器的发展前景

自由电子激光器在短波长、大功率、高效率和波长可调节这四大主攻方向上,为激光学科的研究开辟了一条新途径,它可望用于对凝聚态物理学、材料特征、激光武器、激光反导弹、雷达、激光聚变、等离子体诊断、表面特性、非线性以及瞬态现象的研究,在通讯、激光推进器、光谱学、激光分子化学、光化学、同位素分离、遥感等领域,

自由电子激光器的功能及应用

自由电子激光器(FEL)是一类不同于传统激光器的新型高功率相干辐射光源.虽然传统的激光器具有极好的单色性和相干性, 但它的低功率、低效率、固定频率和光束质量差的弱点, 使它大大逊色于自由电子激光器.自由电子激光器不需要气体、液体或固体作为工作物质, 而是将高能电子束的动能直接转换成相干辐射能.因此,

硬X射线自由电子激光装置启动建设

  上海张江综合性国家科学中心又一重大装置项目——“硬X射线自由电子激光装置”日前获批启动。据悉,该项目作为《国家重大科技基础设施建设“十三五”规划》优先布局的、国内迄今为止投资最大的重大科技基础设施项目,在国家发展改革委、上海市和中科院的共同关心与支持下,在项目各参建单位的共同努力下,取得了阶段性

我国太赫兹源进入自由电子激光时代

  近日,由中国工程物理研究院应用电子学研究所(中物院十所)牵头负责的高平均功率太赫兹自由电子激光装置(以下简称CTFEL装置)首次饱和出光并实现稳定运行。这标志着中国首台具有高重复频率、高占空比特性的太赫兹自由电子激光装置建成,我国太赫兹源正式进入自由电子激光时代。  据了解,太赫兹(THz)辐射

自由电子激光器的工作原理简介

  自由电子激光的物理原理是利用通过周期性摆动磁场的高速电子束和光辐射场之间的相互作用,使电子的动能传递给光辐射而使其辐射强度增大。利用这一基本思想而设计的激光器称为自由电子激光器(简称FEL)。如图1所示,一组扭摆磁铁可以沿z轴方向产生周期性变化的磁场.磁场的方向沿Y轴。由加速器提供的高速电子束经

阿秒激光器可为单个电子活动“摄像”

  据美国《大众科学》网站8月16日(北京时间)报道,一国际科研团队研制出一种新的阿秒级(1阿秒=10-18秒)激光器,当单个电子参与化学反应时,这种激光器或可为其“摄像”,这是迄今为止最高清、最快速的数据收集活动。一旦取得成功,新激光系统将对从基础化学到复杂的药物研究、化学工程学等领

激光焊锡设备助力电子制造业实现高效焊接

随着制造业的快速发展,焊接工艺的高效性和精确性成为了制造企业追求的目标。传统的焊接方法,如手工焊接和电弧焊接,存在着效率低、精度不高等问题,无法满足现代制造业对焊接工艺的要求。而激光焊锡设备作为一种先进的焊接工具,正逐渐成为制造业的焦点。激光焊锡设备采用激光束对焊接材料进行加热,通过材料的熔化和凝固

上海深紫外自由电子激光装置电子束非线性补偿研究获进展

  中国科学院上海应用物理研究所自由电子激光团队于近日完成了一项新的自由电子激光实验,在上海深紫外自由电子激光装置(SDUV-FEL)上,利用相对论电子束团在沟槽金属结构中激起的尾场,对电子束纵向相空间的非线性进行了补偿,并成功实现了自由电子激光辐射光谱的操控和改善。该项研究成果近日发表在《物理评论

上海深紫外自由电子激光实验取得重要进展

  高增益自由电子激光在亮度、相干性和时间结构上都大大优于第三代同步辐射光源,是国际上竞相发展的新一代大科学装置。目前,自由电子激光的工作模式主要有自放大自发辐射(SASE)和高增益谐波产生(HGHG)两种。HGHG需要短脉冲激光和高品质电子束流的精确相互作用,技术比较复杂,但是性能较SASE更好。

激光水准仪和电子水准仪有什么区别

激光水准仪利用激光的单色性和相干性,可在望远镜物镜前装配一块具有一定遮光图案的玻璃片或金属片,即波带板,使之所生衍射干涉。经过望远镜调焦,在波带板的调焦范围内,获得一明亮而精细的十字型或圆形的激光光斑,从而更地照准目标。如在前、后水准标尺上配备能自动跟踪的光电接收靶,即可进行水准测量。在施工测量和大

上海光机所激光尾波场电子加速研究取得重要突破

  中科院上海光学精密机械研究所强场激光物理国家重点实验室徐至展、李儒新研究组于7月15日出版的国际学术期刊《物理评论快报》上发表论文(Phys. Rev. Lett. 107,035001(2011)),报道了首次利用电离注入的全光驱动双尾波场级联电子加速器方案,成功实现了电子注入与

HGHG自由电子激光成功实现大范围波长连续可调

  中国科学院上海应用物理研究所的上海深紫外自由电子激光实验装置(SDUV-FEL)于近日完成了一项新的自由电子激光实验,在国际上率先实现了大范围连续调谐的HGHG自由电子激光放大。   理论上,自由电子激光具有极高亮度和波长连续可调谐的优势。但迄今为止,世界上的自由电子激光装置只能在自

半导体激光器在电子焊接领域的应用

高密度互连随着电子器件和集成电路的微型发展,使得传统的软熔焊接方法不断受到挑战。如何在高密度相互连接中成功地完成对每个细小的焊脚的焊接,而不造成相邻焊脚间的粘连和电路板的热损坏,采用激光进行无接触焊接成为解决方案之一。以前,能够提供足够功率的激光器大多体积庞大、日常维护成本高,因此很不实用。但是,随