氧化锰电极材料在超级电容器中的应用研究获进展
超级电容器具有比锂离子电池更高的功率密度以及相对传统双电层电容器更高的能量密度,近年来引起了人们广泛的研究兴趣,并在相关领域实现了商业应用。在众多电极材料当中,氧化锰因其具有理论比电容量高、环境友好、价格低廉等特点,成为最有潜力的超级电容器电极材料之一。然而,比表面积低、电子及离子传导性能差、循环过程中电极材料在电解液中的易于溶解等缺点,限制了氧化锰电极材料在超级电容器中的应用。 中国科学院过程工程研究所研究员王丹与合作者将具有多孔壳层结构的多壳层Mn2O3空心球用作超级电容器的电极材料,显著提高了超级电容器的比电容量、循环稳定性以及大电流充放电能力。相关结果发表在近期的Advanced Science上。 研究结果表明,在众多提高氧化锰电极材料电容性能的方法中,采用这种多壳层空心微纳米结构代替实心结构是最有效的方法之一。(1)空心结构具有更高的比表面积,能提供更多的法拉第反应活性位点,因而能显著提高超级电容器的比电容量......阅读全文
超级电容器电极材料“瓶颈”获突破
原料来自于储量丰富提取便利的铁盐、碳等,能在常温常压下进行合成,不产生有毒有害气体……近日,南京理工大学夏晖教授团队成功合成了非晶FeOOH/石墨烯复合纳米片,这种新新型非晶材料将大幅降低超级电容器的成本,极大地推动其商业化。 一直以来,超级电容器电极材料的研究集中在纳米晶材料上,但是纳米晶
电极材料改性新法可大幅提高电容器容量
功率密度高、充放电时间短、循环寿命长……说起超级电容器的好处很多,但是目前市场上的商用超级电容器容量普遍较低,影响了超级电容器的广泛应用。南京理工大学发现一种电极材料改性的方法,将大大提高电容器的容量。该成果已发表在最新一期国际权威刊物《先进材料》上。 超级电容器作为一种新型的高效储能装置,可
分级多孔碳结构作为超级电容器电极材料
由于碳材料优良的导电性,可裁剪性,价格低廉,它已被广泛研究作为超级电容器的电极材料。几十年来,碳基超级电容器电极的电容一般保持在100和200 F g-1之间。近来,一种被称为分级多孔碳的新型碳材料,其电容超过了300 F g-1,该类材料实现了传统碳材料在超级电容器应用中的新突破。分级多孔碳含
制备超级电容器电极材料的制备方法有哪些
超级电容器的类型比较多,按不同方式可以分为多种产品,以下作简单介绍。按原理分为双电层型超级电容器和赝电容型超级电容器:双电层型超级电容器1.活性碳电极材料,采用了高比表面积的活性炭材料经过成型制备电极。2.碳纤维电极材料,采用活性炭纤维成形材料,如布、毡等经过增强,喷涂或熔融金属增强其导电性制备电极
最新电极材料改性方法发现-可大幅提高电容器容量
功率密度高、充放电时间短、循环寿命长……说起超级电容器的好处很多,但是目前市场上的商用超级电容器容量普遍较低,影响了超级电容器的广泛应用。南京理工大学发现一种电极材料改性的方法,将大大提高电容器的容量。该成果已发表在最新一期国际权威刊物《先进材料》上。 超级电容器作为一种新型的高效储能装置,可
石墨烯基超级电容器电极材料研究取得系列进展
中国科学院兰州化学物理研究所固体润滑国家重点实验室在石墨烯(Graphene)基超级电容器电极材料研制方面取得系列进展。 超级电容器是介于传统物理电容器和电池之间的一种新型储能器件,具有绿色环保、充电时间短、使用寿命长和工作温度范围宽等优点,其核心部件是性能优异的电极材料。石墨
只有泡沫镍和材料怎么制备超级电容器工作电极
超级电容器,将材料涂到泡沫镍上制备工作电极,是涂单面还是双面超级电容选用石墨做电极材料:第一,是因为石墨材料的电化学稳定性较好,可以让超级电容承受较高单体电压。电极不容易损耗。第二,是因为石墨材料加工速度快,成本低。第三,是因为石墨材料,重量轻,导热和导电性能好。用于超级电容器的电极材料主要是碳材料
青科大在超级电容器电极材料研究领域取得新突破
近日,青岛科技大学中德科技学院教授李镇江泰山学者团队在超级电容器电极材料研究领域取得突破性进展,该成果由中德科技学院新引进青年教师赵健和李镇江团队成员共同完成,并以“A High-Energy Density Asymmetric Supercapacitor Based on Fe2O3Nan
兰州化物所超级电容器用石墨烯电极材料研究获进展
石墨烯因具有优异的物理、化学以及机械性能而成为材料领域的研究热点之一,国内外研究人员围绕石墨烯的可控制备及其在化学储能器件中的应用开展了大量的研究工作。在中科院“百人计划”和国家自然科学基金项目支持下,中国科学院兰州化学物理研究所清洁能源化学与材料实验室低维材料与化学储能课题组围绕石墨烯在超
如何选择电极材料
应根据被测液体的腐蚀性来选择电极的材料,请查有关防腐蚀手册,对于特殊流体应作试验。 含钼不锈钢(0Cr18Ni12Mo2Ti) 硝酸、室温下<5%的硫酸、沸腾的磷酸、蚁酸、碱溶液,在一定压力下的亚硫酸、海水、醋酸 哈氏合金C 哈氏合金B(HC、HB) 海水、盐水 钛(Ti) 海
中国科大设计出一种高性能超级电容器电极材料
近日,中国科学技术大学教授朱彦武课题组开发设计了一种三维分级多孔碳材料,作为超级电容器电极时,展示出优异的电化学储能行为。相关研究成果发表在5月3日的Advanced Materials 上。论文第一作者为课题组的硕士生徐进。 朱彦武团队前期通过氢氧化钾活化微波剥离的氧化石墨烯,制备出优异的超
超高功率超级电容器电极材料:多孔三维寡层类石墨烯
双电层超级电容器(EDLC)具有功率密度高、循环寿命长、安全性好等优点,在消费电子产品、电动汽车、国防科技和航空等领域具有广泛的应用,相关研究成为当前的前沿热点。理想的EDLC电极材料应同时具备:1)高比表面积以确保足够的电荷存储空间;2)均衡分布的孔结构以利于电解液离子的快速输运,提升比电容和
氧化锰电极材料在超级电容器中的应用研究获进展
超级电容器具有比锂离子电池更高的功率密度以及相对传统双电层电容器更高的能量密度,近年来引起了人们广泛的研究兴趣,并在相关领域实现了商业应用。在众多电极材料当中,氧化锰因其具有理论比电容量高、环境友好、价格低廉等特点,成为最有潜力的超级电容器电极材料之一。然而,比表面积低、电子及离子传导性能差、循
芯片超级电容器又添新材料
多年来,能装在芯片上的微小超级电容一直广受科学家追捧,决定电容器性能的关键是其电极材料,有潜力的“选手”包括石墨烯、碳化钛和多孔碳等。据德国《光谱》杂志网站近日报道,芬兰国家技术研究中心(VTT)研究团队最近把目光转向了一种“不可能”的弱电材料——多孔硅,为了把它变成强大的电容器,团队创新性地在
我国首个超级电容器材料标准发布
近日,江苏国泰超威新材料有限公司(简称国泰超威)起草的《超级电容器用有机电解液规范》(计划号2015-0675T-SJ)通过了国家行业标准审定会。此标准也是我国超级电容器材料方面的第一个行业标准。 据报道,自2015年初该标准立项后,中电标协将该标准制定工作组设在了张家港市企业国泰超威,让其牵
超级电容器电极材料掺杂锰氧化物的电化学循环稳定性
近日,合肥工业大学材料科学与工程学院教授闫建与中国科学院合肥物质科学研究院强磁场科学中心研究员王俊峰课题组毛文平合作,研究Al3+掺杂二氧化锰的电化学循环稳定性,相关成果发表在ACS Appl. Mater. Interfaces 杂志上。 超级电容器具有比容量高、循环寿命长、环
热电偶的电极材料要求
1、在测温范围内,热电性质稳定,不随时间而变化,有足够的物理化学稳定性,不易氧化或腐蚀; 2、电阻温度系数小,导电率高,比热小; 3、测温中产生热电势要大,并且热电势与温度之间呈线性或接近线性的单值函数关系; 4、材料复制性好,机械强度高,制造工艺简单,价格便宜。
压电陶瓷尺寸、电极材料如何选
压电陶瓷尺寸、电极材料可选芯明天可以提供多种尺寸结构以及镍或金等不同电极材料的压电陶瓷管扫描器。外径壁厚高度1.524mm2.54mm3.175mm6.35mm9.525mm0.254mm0.3048mm0.381mm0.508mm0.762mm3.175mm至76.2mm
氮磷共掺杂碳材料与磷化铁集成电极材料问世
安徽理工大学材料科学与工程学院副教授黄新华在电容去离子研究领域取得新进展,制备出氮磷共掺杂碳基材料和磷化铁分散氮、磷掺杂多孔碳电极材料,并将上述两种材料用于高选择性去除废水中重金属铜离子。相关研究成果相继发表在《脱盐》和《化学工程杂志》上。 氮磷共掺杂碳材料高效吸附铜离子配位机理示意图。安徽理工大
氮磷共掺杂碳材料与磷化铁集成电极材料问世
安徽理工大学材料科学与工程学院副教授黄新华在电容去离子研究领域取得新进展,制备出氮磷共掺杂碳基材料和磷化铁分散氮、磷掺杂多孔碳电极材料,并将上述两种材料用于高选择性去除废水中重金属铜离子。相关研究成果相继发表在《脱盐》和《化学工程杂志》上。 氮磷共掺杂碳材料高效吸附铜离子配位机理示意图。安徽理工大
化学所电极材料研究:实现材料表界面活性的有效控制
能量密度的提升是锂离子电池领域的研究重点,而正极材料是决定锂离子电池能量密度的关键。镍锰酸锂材料是一种高电压的正极材料,具有高能量密度和良好的倍率性能;然而,其自身的高工作电压会显著加速电极材料表面的副反应,严重损害电极材料的结构稳定性和长循环性能,限制了它在高比能动力电池中的应用。 在国家自
宁波材料所高性能可充电电池电极材料领域获进展
随着可充电(二次)电池在能源领域的广泛应用,具有更高能量密度、更大功率密度的可充电电池体系成为研究人员追逐的研究热点。近年来,随着二次电池锂离子电池、钾离子电池、镁离子电池以及铝离子电池等的发展,开发匹配以上二次电池高性能的电极材料成为能否实现新型高性能储能与能量转换等目标的关键。 近年来,中
如何选择纯化水计量表电极材料?
应根据被测液体的腐蚀性来选择电极的材料,请查有关防腐蚀手册,对于特殊流体应作试验。 材料 耐腐蚀性能 含钼不锈钢(0Cr18Ni12Mo2Ti) 硝酸、室温下<5%的硫酸、沸腾的磷酸、蚁酸、碱溶液,在一定压力下的亚硫酸、海水、醋酸 哈氏合金C哈氏合金B(HC 、HB ) 海水、盐水 钛 (T ,不包
电压击穿试验仪材料电极的选型
板材和片状材料(包括纸板、纸、织物和薄膜)选用不等经电极;电极由两个金属圆柱体组成其边缘倒成半径3.0±0.2mm的圆弧其中一个电极的直径为25mm高度25mm另一个电极的直接为75mm高度为15mm两个电极同轴放置误差在2mm内带、薄膜和窄条;两个电极为两根金属棒直径为6mm垂直按在电极架内一个电
新型复合金属锂电极材料问世
由美国斯坦福大学著名材料学家崔屹与美国前能源部部长、诺贝尔物理奖得主朱棣文组成的研究团队,最近在金属锂电极的实际应用研发方面取得重大突破。以博士生梁正为骨干的研究小组首次提出“亲锂性”这一概念,并利用表面“亲锂化”处理的碳质主体材料成功制备出一种复合金属锂电极,该电极可大大提高锂电池性能。
电极材料的电化学性能
分为惰性电极和非惰性电极。惰性电极(铂碳棒)一般作为阴极,非惰性电极:一般与电解质溶液中主要电解质的金属阳离子为相同金属,(金属活动顺序表中除铂金外都可以作为非惰性电极)
锂电池的电极材料选择介绍
不同的电极材料会赋予锂电池不同的特性,这主要体现在以下几个方面: ● 寿命; ● 环境温度范围; ● 最低工作温度时的最大放电电流; ● 电压上升达下限的最短时间; ● 存储时间和存储条件; ● 额定电压、最低电压和最高电压; ● 初始放电电流、平均放电电流和最大放电电流; ●
电磁流量计电极材料选型介绍
电磁流量计是根据法拉第电磁感应原理来工作的,在电磁流量计选型时候主要考虑工况介质的耐酸、耐碱。根据工况介质选择合适的电极和内衬。下面介绍下,各种电极材料的耐蚀及耐磨性能。不锈钢:用于工业用水、生活用水、污水等具有弱腐蚀性的介质,适用于石油、化工、钢铁等工业部门及,市政、环保等领域。哈氏合金B(HB)
电极材料的电化学性能
分为惰性电极和非惰性电极。惰性电极(铂碳棒)一般作为阴极,非惰性电极:一般与电解质溶液中主要电解质的金属阳离子为相同金属,(金属活动顺序表中除铂金外都可以作为非惰性电极)
热电偶的电极材料的要求
热电偶的形成原理很复杂,大致可理解为不同材料在温度作用下载流子活跃程度不同,而向另一端(另一种材料)扩散的结果。所以不是任意两种导体皆可组成热电偶的(必须活跃程度不同)。很多情况下两根不同材料的金属丝是可以构成热电偶的,不过是否具有应用价值就不一定了。通常所说的不同用途的热电偶往往是特指热电偶。从理