上海生科院发现植物芽再生能力随年龄降低的分子机制

2月4日,The Plant Cell 杂志在线发表了中国科学院上海生命科学研究院植物生理生态研究所王佳伟研究组题为An Intrinsic MicroRNA Timer Regulates Progressive Decline in Shoot Regenerative Capacity in Plants 的研究论文。该研究论文报道了植物芽再生能力随年龄降低的分子机制。 再生能力随年龄增加而逐渐降低是生命体的普遍现象。植物细胞具有全能性,在一定的外界环境条件下,离体植物组织可以诱导再生出整棵植株。在此过程中,生长素(Auxin)和细胞分裂素(Cytokinin)在其中扮演着重要的角色:细胞分裂促进芽的分化,而生长素诱导根的分化。在该项研究工作中,博士生张天奇等人发现,植物的芽再生能力伴随年龄增长而递减。虽然幼年期和成年期叶片的细胞分裂素含量没有差异,但是提高细胞分裂素浓度可以回复成年期植物叶片再生能力下降的缺陷。进一......阅读全文

植物组织培养再生的步骤

一、接种 组织培养的接种是指将灭过菌的材料,在无菌的情况下,切成小块,放入培养基的过程。科研、生产部门的接种工作,多在无菌室或超净工作台上进行,中学可制作接种箱,在箱内进行接种。接种的方法步骤如下: 1、在无菌室或接种箱中放好接种时所需要的酒精灯、贮存70%酒精和棉球的广口瓶、各种镊子、

植物细胞全能性和再生

  10月9日,《中国科学-生命科学》期刊在线发表了中国科学院分子植物科学卓越创新中心中科院院士许智宏、研究员徐麟、研究员王佳伟,与山东农业大学教授张宪省、苏英华、中科院植物研究所研究员胡玉欣联合撰写的题为《植物细胞全能性和再生》的综述论文。  再生是指生物体的组织或器官在受损或胁迫后自我修复或替换

徐麟研究组揭示植物再生的伤口信号转导机制

  强大的再生能力是植物适应严酷环境的生存技能之一。受伤离体的枝条或叶片掉落在湿润的土壤表面后,能够在伤口处快速再生不定根,顽强的生存下去。“受伤”是引发再生的原因,但是我们对伤口信号如何控制再生知之甚少。2019年4月22日,中国科学院分子植物科学卓越创新中心/植物生理生态研究所徐麟研究组于Nat

叶绿素测定仪研究再生水灌溉对植物叶绿素含量的影响

用再生水灌溉植物既降低环境污染又提高了资源利用率。借助叶绿素测定仪研究再生水灌溉对植物叶绿素含量的影响,可以帮助研究再生水灌溉对植物生长的影响关系,为更好地利用再生水提供参考依据。进行盆栽和小区试验,使用叶绿素测定仪测定不同水质灌溉下3种植物的叶绿素含量。试验方法为盆栽试验。 把高羊茅、早熟禾、结缕

科学家研究揭示植物再生的伤口信号转导机制

  强大的再生能力是植物适应严酷环境的生存技能之一。受伤离体的枝条或叶片掉落在湿润的土壤表面后,能够在伤口处快速再生不定根,顽强地生存下去。“受伤”是引发再生的原因,但是人们对伤口信号如何控制再生知之甚少。4月22日,中国科学院分子植物科学卓越创新中心/植物生理生态研究所徐麟研究组在Nature P

植物所发现植物离体再生中控制愈伤形成的关键因子

  植物的离体再生体系在许多物种中已经相当成熟,被广泛应用于农业生产和基因改良领域已有半个世纪的历史。愈伤诱导作为这个体系的起始步骤,长期以来被认为是植物体细胞脱分化的过程,而植物激素生长素在这个过程中起着关键的作用。然而,愈伤发生的分子机制长期以来困扰着科学家,其主要原因之一是控制植物愈伤发生过程

华中农大最新研究成果助力再生稻提高”再生力“

原文地址:http://news.sciencenet.cn/htmlnews/2023/11/511499.shtm再生稻是指在头季水稻成熟后收割留桩,再经过一定的栽培管理措施,使稻桩上的休眠芽萌发,继续生长结实而再次收获的一季水稻。再生稻可以通过提高收获指数来增加粮食产量,对确保粮食安全、促进农

鹿角再生机制与骨组织再生修复研究方面取得进展

图 鹿角快速生长的细胞和分子机制  在国家自然科学基金项目(批准号:32225009、31970392、82122043、32030016、32122083、U20A20403)等资助下,西北工业大学生态环境学院邱强和王文教授团队、中国人民解放军第四军医大学西京医院黄景辉教授团队、长春科技学院李春义

蝾螈研究有助人类肢体再生

  据英国《每日邮报》报道,德国科学家最新研究发现,蝾螈体内存在着一种奇特的酶,可让其肢体和器官重生。科学家认为,人工合成出这种酶,有望让失去了四肢以及某些器官的人再生出新的四肢和器官。   因为栖息地减少以及人类的捕杀,墨西哥钝口螈在墨西哥处于灭绝边缘。科学家在德国汉诺威医学院对其进行试验后发现

梳理心脏再生最新研究进展

在心脏病发作后,死亡的心肌组织会由瘢痕组织替代。不过,瘢痕组织与心肌的搏动方式不相同,因而心脏的“泵血”能力下降。近年来,科学家们采用多种手段将心脏瘢痕组织和其他组织中的成纤维细胞直接重编程为心肌细胞。这一突破性的成果为未来的临床试验和心脏病患者治疗奠定基础。基于此,小编针对这一方面的最新进展,进行

上海生科院提出植物芽从头再生的分子框架图

  在合适培养环境条件下,植物离体组织或器官(也称为外植体)能够从头再生出新的分生组织。六十多年前,Skoog和Miller发现细胞分裂素和生长素是诱导外植体从头建立茎尖或根尖分生组织的关键要素,但其中蕴含的分子机制尚不清晰。4月7日,《植物细胞》(The Plant Cell)杂志在线发表了中国科

研究揭示适度降低心率促进心脏再生

人和哺乳动物心肌再生能力缺失和心脏受损后强烈的纤维化反应是心血管疾病治疗面临的瓶颈性问题,实现人类的心脏产生类似于斑马鱼、蝾螈等具有的完全再生能力是科学家们追求的梦想。近日,中山大学中山医学院蔡卫斌团队,研究揭示适度降低心率可通过改变心肌细胞的能量代谢模式,诱导心肌细胞增殖并促进心脏再生

研究揭示适度降低心率促进心脏再生

人和哺乳动物心肌再生能力缺失和心脏受损后强烈的纤维化反应是心血管疾病治疗面临的瓶颈性问题,实现人类的心脏产生类似于斑马鱼、蝾螈等具有的完全再生能力是科学家们追求的梦想。近日,中山大学中山医学院蔡卫斌团队,研究揭示适度降低心率可通过改变心肌细胞的能量代谢模式,诱导心肌细胞增殖并促进心脏再生

武汉研究斑马鱼揭示器官再生之谜

  身长约4厘米,具暗蓝与银色纵条纹 基因与人类的相似度达87% 心脏能再生 约2000种人类疾病能出现在其身上 胚胎在体外发育,且完全透明 一种经济实惠的实验动物,一对斑马鱼一次可生产300只“鱼宝宝”   “斑马鱼的基因与人类相似度高达87%,人类无法长出第二个心脏,而斑马鱼的心脏却能再生

研究揭示适度降低心率促进心脏再生

人和哺乳动物心肌再生能力缺失和心脏受损后强烈的纤维化反应是心血管疾病治疗面临的瓶颈性问题,实现人类的心脏产生类似于斑马鱼、蝾螈等具有的完全再生能力是科学家们追求的梦想。近日,中山大学中山医学院蔡卫斌团队,研究揭示适度降低心率可通过改变心肌细胞的能量代谢模式,诱导心肌细胞增殖并促进心脏再生。相关研究发

氧气削弱心脏的再生能力研究概要

  氧气,众所周知,全身循环富含氧的血液是心脏的一个重要功能。但同时氧也是一种高度活化的非金属元素和氧化剂,可以非常容易地与其他的化合物形成有毒物质。现在研究人员发现是后一种特性造成了成体心脏丧失再生能力。这一突破性的研究发现发表在4月24日的《细胞》(Cell)杂志上,证实富含氧气的后天环境导

氧削弱心脏的再生能力相关研究

  来自德克萨斯大学西南医学中心(UT Southwestern Medical Center)的研究人员发现,新生动物的心脏具有完全的自愈能力,而成体心脏则丧失了这种能力。现在,他们进一步揭示了在成年期心脏丧失其惊人再生能力的原因,答案很简单——氧气。    是的,就是氧气。众所周知,全身循环

植物激素的研究历史

C.Darwin在1880年研究植物向性运动时,只有各种激素的协调配合,发现植物幼嫩的尖端受单侧光照射后产生的一种影响,能传到茎的伸长区引起弯曲。1928年荷兰F.W.温特从燕麦胚芽鞘尖端分离出一种具生理活性的物质,称为生长素,它正是引起胚芽鞘伸长的物质。1934年荷兰F.克格尔等从人尿得到生长素的

研究团队在愈伤组织能再生器官研究获进展

  组织培养是重要的植物营养繁殖技术,也是基因编辑等现代农业分子育种技术得以应用的基础。20世纪50年代,由Skoog、Miller奠定的组织培养技术沿用至今(Symposia of the Society for Experimental Biology,11:118–130, 1957)。在两步

Commun-Bio:新研究揭示脊髓再生的奥秘

  最近,海洋生物实验室(MBL)的科学家已经确定了蝾螈中的基因调控元件,当它们被激活时,允许神经管和相关神经纤维在严重脊髓损伤后进行功能性再生。有趣的是,这些基因也存在于人类中,尽管它们以不同的方式被激活。他们的研究结果发表在本周的《Communications Biology》杂志上。  “蝾螈

美斥资2.5亿美元研究肢体再生术

北京时间4月21日消息,据国外媒体报道,官员们17日表示,五角大楼正与大学和医院合作,共同斥资2.5亿多美元创建一家新的研究机构——三军再生医学研究所,新研究所将致力于寻找利用自身干细胞帮助受伤士兵再生皮肤、肌肉和肢体的技术和方式。 陆军外科主治医师、埃里克·斯库梅克中将表示,他希望看到的是,在士

欧盟骨骼再生医疗研究取得新进展

  欧盟第七框架计划支持的一项研究(项目名称Collregen)在骨骼组织再生与干细胞研究领域取得新进展。研究人员利用基因疗法及干细胞技术使骨骼组织再生,从而使骨损伤快速愈合,开辟了再生医疗与组织修复技术新机遇。   再生医学是通过研究组织再生机制及干细胞分化机理,寻找有效的生物治疗方法,促进机体

大体积肌肉缺损再生修复研究获进展

近日,《生物材料》杂志刊发了北京大学第三医院成形科安阳副教授与运动医学科胡晓青研究员团队一项关于大体积肌肉缺失功能性再生修复研究最新成果。该研究使用带血管蒂的脂肪脱细胞基质作为肌肉组织工程的生物支架,并利用脂肪干细胞和成肌细胞对其联合再细胞化,这一新的肌肉组织工程材料构建策略表现出高效的肌肉再生能力

研究人员发现动物“再生记忆”可被改写

  台湾研究人员陈振辉及其研究团队日前公布的最新研究成果发现,经由调控特定基因的活性,可以改写动物的“再生记忆”。  该项研究发现,当“再生记忆”受到影响后,斑马鱼再生的新尾鳍可以出现不同的大小和形状。这是科学家首次证实“再生记忆”可以被改写。此研究已于11月27日刊登于国际期刊《当代生物学》。  

肺细胞再生研究最新进展

  就像所有器官那样,人肺部刚开始时是作为未分化的干细胞团块存在的。但是在几个月后,这些细胞形成有序的结构。它们聚集在一起,一些细胞形成肺部气道,其他的细胞形成肺泡。肺泡是我们的人体交换氧气和二氧化碳的地方。在理想的情形下,最终的结果是形成两个健康的会呼吸的肺部。   近年来,自从科学家们首次发现

大体积肌肉缺损再生修复研究获进展

原文地址:http://news.sciencenet.cn/htmlnews/2024/3/519962.shtm

Circulation:最新研究!机械心脏可再生心脏组织

  在一项新的初步研究中,来自美国德克萨斯大学西南医学中心的研究人员发现机械心脏(mechanical heart)会刺激衰竭心脏的不活跃部分再生,这为开发心脏再生疗法带来了希望。相关研究结果于2022年1月10日在线发表在Circulation期刊上,论文标题为“Bidirectional Cha

再生医学研究:ips临床应用揭开序幕

  2013年8月26日,为了实现人工多功能干细胞(iPS細胞)的临床应用,促进再生医疗的发展,围绕着推动医疗体系研究的“再生医疗实现据点网站建设事宜”的研讨会于东京都隆重拉开了序幕。会议中介绍了以ips细胞开发的京都大学山中伸弥教授为代表的前线研究者们的研究成果和进展情况。大约有1000多名科研医

研究力证干细胞可安全用于再生医学

  最近,剑桥大学的研究人员发现了迄今为止最有力的证据表明,人类多能干细胞――能够产生身体所有的组织,一旦被移植到胚胎中将会正常发育。这些研究结果发表在12月17日的《Cell Stem Cell》,对再生医学有重要的意义。  用于再生医学或生物医学研究的人类胚胎干细胞,有两个来源:胚胎干细胞,来源

人类再生医学领域的最新研究进展

  【1】PNAS:重大进展!发现胎盘干细胞能够再生心脏,有望开发出新型干细胞疗法来治疗心脏病  DOI:10.1073/pnas.1811827116.  在一项新的研究中,来自美国西奈山伊坎医学院的研究人员证实在动物模型中,来自胎盘的称为Cdx2细胞的干细胞能够在心脏病发作后再生健康的心脏细胞。